Journal of Shanghai Jiao Tong University ›› 2025, Vol. 59 ›› Issue (5): 628-636.doi: 10.16183/j.cnki.jsjtu.2023.405
• Mechanical Engineering • Previous Articles Next Articles
LIN Yilin, WANG Ye, CHEN Chengcheng, CAI Aifeng, YANG Guang(), WU Jingyi
Received:
2023-08-21
Revised:
2023-10-03
Accepted:
2023-10-30
Online:
2025-05-28
Published:
2025-06-05
CLC Number:
LIN Yilin, WANG Ye, CHEN Chengcheng, CAI Aifeng, YANG Guang, WU Jingyi. Experimental Study on Characteristics of Bubble Point Pressure of Double-Layer Metal Screen[J]. Journal of Shanghai Jiao Tong University, 2025, 59(5): 628-636.
Tab.3
Comparison of experimental results with those of other literature
网幕规格 | 数据来源 | 实验工质 | 泡破压力/Pa | 有效孔径/μm | 与本文误差/% |
---|---|---|---|---|---|
DT40×430 | 本文实验 | HFE7500 | 511.83±22.62 | 120.58±5.20 | — |
文献[ | 乙醇 | — | 107.38 | -10.9 | |
DT80×700 | 本文实验 | HFE7500 | 1 000.60±22.48 | 61.59±1.40 | — |
文献[ | 乙醇 | — | 53.45 | -13.2 | |
文献[ | 丙酮和异丙醇 | — | 58.65 | -4.8 | |
DT203×1 600 | 本文实验 | HFE7500 | 2 680.67±110.53 | 23.02±1.00 | — |
文献[ | 乙醇 | — | 22.79 | -1 |
[1] |
WANG Z, YANG G, WANG Y, et al. A three-dimensional flow model of screen channel liquid acquisition devices for propellant management in microgravity[J]. npj Microgravity, 2022, 8: 28.
doi: 10.1038/s41526-022-00216-5 pmid: 35902585 |
[2] | FESTER A D, VILLARS J A, UNEY E P. Surface tension propellant acquisition system technology for space shuttle reaction control tanks[J]. Journal of Spacecraft and Rockets, 1976, 13(9): 522-527. |
[3] | 王磊, 厉彦忠, 马原, 等. 液体推进剂在轨加注技术与加注方案[J]. 航空动力学报, 2016, 31(8): 2002-2009. |
WANG Lei, LI Yanzhong, MA Yuan, et al. On-orbitrefilling technologies and schemes of liquid propellant[J]. Journal of Aerospace Power, 2016, 31(8): 2002-2009. | |
[4] | 马原, 厉彦忠, 王磊, 等. 低温推进剂在轨加注技术与方案研究综述[J]. 宇航学报, 2016, 37(3): 245-252. |
MA Yuan, LI Yanzhong, WANG Lei, et al. Review on on-orbit refueling techniques and schemes of cryogenic propellants[J]. Journal of Astronautics, 2016, 37(3): 245-252. | |
[5] | 王磊, 厉彦忠, 张少华, 等. 低温推进剂空间管理技术研究进展与展望[J]. 宇航学报, 2020, 41(7): 978-988. |
WANG Lei, LI Yanzhong, ZHANG Shaohua, et al. Research progress and outlooks of cryogenic propellant space management technologies[J]. Journal of Astronautics, 2020, 41(7): 978-988. | |
[6] | 马原, 陈虹, 邢科伟, 等. 低温推进剂网幕通道式液体获取装置性能研究进展[J]. 制冷学报, 2019, 40(3): 1-7. |
MA Yuan, CHEN Hong, XING Kewei, et al. Review of screen channel liquid acquisition device for cryogenic propellants[J]. Journal of Refrigeration, 2019, 40(3): 1-7. | |
[7] | HARTWIG J, DARR S. Influential factors for liquid acquisition device screen selection for cryogenic propulsion systems[J]. Applied Thermal Engineering, 2014, 66(1/2): 548-562. |
[8] | SAVAS J A, HARTWIG W J, MODER P J. Thermal analysis of a cryogenic liquid acquisition device under autogenous and non-condensable pressurization schemes[J]. International Journal of Heat and Mass Transfer, 2014, 74(7): 403-413. |
[9] | HARTWIG W J, KAMOTANI Y. The static reseal pressure model for cryogenic screen channel liquid acquisition devices[J]. International Journal of Heat and Mass Transfer, 2016, 99: 31-43. |
[10] | HARTWIG J, DARR S, MEYERHOFER P, et al. EDU liquid acquisition device outflow tests in liquid hydrogen: Experiments and analytical modeling[J]. Cryogenics, 2017, 87: 85-95. |
[11] | HARTWIG J, CHATO D, MCQUILLEN J, et al. Screen channel liquid acquisition device outflow tests in liquid hydrogen[J]. Cryogenics, 2014, 64: 295-306. |
[12] | HARTWIG J, MCQUILLEN J. Analysis of screen channel LAD bubble point rests in liquid methane at elevated temperature[C]// 50th Aerospace Sciences Meeting. Reston, USA: American Institute of Aeronautics and Astronautics, 2012: 1-10. |
[13] | HARTWIG J, MCQUILLEN J. Screen channel liquid-acquisition device bubble point tests in liquid methane[J]. Journal of Thermophysics and Heat Transfer, 2014, 29(2): 364-375. |
[14] | HARTWIG J, MCQUILLEN J, JURNS J. Screen channel liquid-acquisition-device bubble point tests in liquid oxygen[J]. Journal of Thermophysics and Heat Transfer, 2015, 29(2): 353-363. |
[15] | HARTWIG J. Screen channel liquid acquisition device bubble point tests in liquid nitrogen[J]. Cryogenics, 2016, 74: 95-105. |
[16] | CAMAROTTI C, DENG O, DARR S, et al. Room temperature bubble point, flow-through screen, and wicking experiments for screen channel liquid acquisition devices[J]. Applied Thermal Engineering, 2019, 149: 1170-1185. |
[17] | CHRISTIAN H, GERSTMANN J. Study on the gas retention capability of metallic screens[C]// 5th European Conference for Aeronautics Sciences. Munich, Germany: DLR, 2013: 1-13. |
[18] | 马原, 孙靖阳, 厉彦忠, 等. 增压速率对多孔金属筛网泡破压力影响的实验研究[J]. 西安交通大学学报, 2021, 55(11): 192-198. |
MA Yuan, SUN Jingyang, LI Yanzhong, et al. Experimental study on the effects of pressurization rate on bubble point pressure of porous metallic screens[J]. Journal of Xi’an Jiaotong University, 2021, 55(11): 192-198. | |
[19] | 周勇瑞, 朱庆春, 耑锐, 等. 通道式液体获取装置筛网低温力学特性研究[J]. 低温与超导, 2021, 49(11): 25-31. |
ZHOU Yongrui, ZHU Qingchun, ZHUAN Rui, et al. Study on cryogenic mechanical properties of screen mesh for channel liquid acquisition device[J]. Cryogenics & Superconductivity, 2021, 49(11): 25-31. | |
[20] |
王晔, 张婉雨, 汪彬, 等. 多孔网幕泡破压力预测模型的建立及实验验证[J]. 化工学报, 2022, 73(3): 1102-1110.
doi: 10.11949/0438-1157.20211656 |
WANG Ye, ZHANG Wanyu, WANG Bin, et al. Analytical model of bubble point pressure for metal wire screens and experimental validation[J]. CIESC Journal, 2022, 73(3): 1102-1110. | |
[21] | PAYNTER H. Acquisition/expulsion system for earth orbital propulsion system, Vol.II[DB/OL]. (1973-10-01) [2023-07-01]. https://ntrs.nasa.gov/citations/19740004413 . |
[22] | CONRATH M, SMIYUKHA Y, FUHRMANN E, et al. Double porous screen element for gas-liquid phase separation[J]. International Journal of Multiphase Flow, 2013, 50(Complete): 1-15. |
[23] | 王晔. 网幕通道式液体获取装置中低温推进剂流动机理及相分离特性研究[D]. 上海: 上海交通大学, 2022. |
WANG Ye. Flow and phase separation of cryogenic propellants in screen channel liquid acquisition devices[D]. Shanghai: Shanghai Jiao Tong University, 2022. | |
[24] | CONRATH M, DREYER M. Gas breakthrough at a porous screen[J]. International Journal of Multiphase Flow, 2012, 42: 29-41. |
[25] | HARTWIG W J, KAMOTANI Y. The static bubble point pressure model for cryogenic screen channel liquid acquisition devices[J]. International Journal of Heat and Mass Transfer, 2016, 101: 502-516. |
[26] | HARTWIG W J, MANN JR J A. A predictive bubble point pressure model for porous liquid acquisition device screens[J]. Journal of Porous Media, 2014, 17(7): 587-600. |
[27] | 邱惠中. 扩散焊接及其在航空航天领域的应用[J]. 宇航材料工艺, 1997(4): 27-32. |
QIU Huizhong. Diffusion welding and its application in aerospace[J]. Aerospace Materials and Technology, 1997(4): 27-32. | |
[28] | 高强, 郭建亭, 刘午, 等. TiAl合金与42CrMo扩散钎焊的界面组织及形成机理[J]. 航空材料学报, 2003(Sup.1): 51-54. |
GAO Qiang, GUO Jianting, LIU Wu, et al. The microstructure and forming mechanism of diffusion brazing interface of TiAl alloy and 42CrMo[J]. Journal of Aeronautical Meterials, 2003(Sup.1): 51-54. | |
[29] | 刘赛. 毛细上升与贾敏效应的理论与实验研究[D]. 山东: 中国石油大学, 2020. |
LIU Sai. Theoretical and experimental studies of capillary rise and Jamin effect[D]. Shandong: China University of Petroleum, 2020. |
[1] | GAO Bo, LI Fei, SHI Lun, TAO Peng, SHI Zhengang, ZHANG Chao, PENG Jie, ZHAO Yiyi. A Low-Carbon Interactive Management Strategy for Community Integrated Energy System Based on Real-Time Carbon Intensity Assessment [J]. Journal of Shanghai Jiao Tong University, 2025, 59(5): 580-591. |
[2] | JI Mian, LIN Yanping, WANG Dongmei, CHEN Li, MA Xin. Precise Foot Feature Point Localization and Automatic Parameters Measurement [J]. Journal of Shanghai Jiao Tong University, 2025, 59(5): 703-710. |
[3] | Zhang Zaiyi, Lv Na, Tao Wei, Zhao Hui. New Encoder Based on Grating Eddy-Current with Differential Structure [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 337-351. |
[4] | FAN Pengfei, LI Qingbo, LI Zhen, CHEN Chenglin. Research on Guidance Information Extraction Algorithm Based on Radar Relative Measurement [J]. Air & Space Defense, 2025, 8(2): 50-57. |
[5] | LI Yi, OU Shuyan, LIANG Weidong, DONG Jiabao, ZHUANG Zhidong. Numerical Simulation of Rocket Fairing Spin Separation in Low-Altitude High-Dynamic-Pressure Environment [J]. Air & Space Defense, 2025, 8(1): 102-108. |
[6] | XING Hongwen, LIU Siren, GUAN Xiao. Quality Control for Aircraft Section Mating Assembly Driven by Multi-Field Fusion Measurement [J]. Air & Space Defense, 2024, 7(5): 97-102. |
[7] | LI Jihao1, LIN Guanying2, WANG Nuansheng3, LI Yang3, LI Junyang1. Overview of the Development of Flexible Ocean CTD Sensors [J]. Ocean Engineering Equipment and Technology, 2024, 11(3): 69-77. |
[8] | GAO Xiaotong11 (高晓彤), MA Yanfang1,2* (马艳芳), ZHOU Wei1 周伟). Analysis of Software Trustworthiness Based on FAHP-CRITIC Method [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 588-600. |
[9] | GUO Tongbiao, ZHANG Ji, LI Xinliang. Direct Numerical Simulation of Strong Shock Wave and Boundary Layer Interactions in a Compression Corner [J]. Air & Space Defense, 2024, 7(2): 29-35. |
[10] | YU Miao, HU Jingxuan, ZHANG Shouzhi, WEI Jingjing, SUN Jianqun, WU Yixiao. Fast Stability of New Power System Based on a PMU Gradient Dynamic Deviation Method [J]. Journal of Shanghai Jiao Tong University, 2024, 58(1): 40-49. |
[11] | LIU Zhenghong, YU Yali, CHENG Weilun, LI Muzhi, YANG Lixia, ZHAO Xiaofeng, PENG Di, MOU Rende, LIU Delin. Evaluation of Thermal Insulation Performance of EB-PVD YSZ Thermal Barrier Coatings by Phosphorescence Lifetime Online Measurement [J]. Journal of Shanghai Jiao Tong University, 2023, 57(9): 1186-1195. |
[12] | YANG Dan(杨丹),YU Haidong*(余海东),LIN Zhangpeng(林张鹏). Dynamic Analysis and Optimal Parameter Design of Flexible Composite Structures via Absolute Nodal Coordinate Formulation [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 621-629. |
[13] | SUN Hao (孙昊), DU Xuan (杜宣), LÜ Na(吕娜), CUI Bin(崔斌), ZHA Hui(赵辉). High Curvature Stripe Profile Extraction Algorithm of Line Structured Light Measuring System [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 560-568. |
[14] | DU Libin, CUI Yongchao, LIU Jie, ZHANG Xiaobo. Overview of the Development of Expendable Conductivity Temperature and Depth [J]. Ocean Engineering Equipment and Technology, 2023, 10(3): 33-40. |
[15] | LI Weiwei, FU Liqiang, GONG Yuzhe, XU Bin, DING Xing. Study on Cushioning Property of Thin-Walled Cylinders under Unlocking Impact of Separation Bolt [J]. Air & Space Defense, 2023, 6(2): 43-46. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||