[1] |
卫光仁, 柴宝华, 韩冶, 等. 高温钠热管传热性能试验研究[J]. 原子能科学技术, 2021, 55(6): 1039-1046.
doi: 10.7538/yzk.2021.youxian.0115
|
|
WEI Guangren, CHAI Baohua, HAN Ye, et al. Experimental study on heat transfer performance of high temperature sodium heat pipe[J]. Atomic Energy Science and Technology, 2021, 55(6): 1039-1046.
doi: 10.7538/yzk.2021.youxian.0115
|
[2] |
余清远, 赵鹏程, 马誉高. 基于CFD方法的高温热管特性研究[J]. 核动力工程, 2022, 43(2): 70-76.
|
|
YU Qingyuan, ZHAO Pengcheng, MA Yugao. CFD analysis on characteristics of high temperature heat pipe[J]. Nuclear Power Engineering, 2022, 43(2): 70-76.
|
[3] |
刘逍, 田智星, 王成龙, 等. 高温热管传热特性实验研究[J]. 核动力工程, 2020(Sup.1): 106-111.
|
|
LIU Xiao, TIAN Zhixing, WANG Chenglong, et al. Experimental study on heat transfer performance of high temperature potassium heat pipe[J]. Nuclear Power Engineering, 2020(Sup.1): 106-111.
|
[4] |
MANOJ R, KUMAR M, NARASIMHARAO R, et al. Performance evaluation of sodium heat pipe through parametric studies[J]. Frontiers in Heat Pipes, 2013, 3(4): 3003-3011.
|
[5] |
CISTERNA L H, VITTO G, CARDOSO M C, et al. Charging procedures: Effects on high temperature sodium thermosyphon performance[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020(42): 416-426.
|
[6] |
田智星, 王成龙, 黄金露, 等. 热管冷却反应堆中高温钠热管传热极限实验研究[C]// 中国核科学技术进展报告(第七卷)——中国核学会2021年学术年会论文集第2册. 北京: 中国原子能出版社, 2022: 187-194.
|
|
TIAN Zhixing, WANG Chenglong, HUANG Jinlu, et al. Experimental investigation on heat transfer limit of high-temperature sodium heat pipe[C]// Report on Advances in China Nuclear Science and Technology (Volume 7)—Proceedings of the 2021 Academic Annual Conference of the Chinese Nuclear Society, Volume 2. Beijing, China: China Atomic Energy Press, 2022: 187-194.
|
[7] |
HU G, HU R, ZOU L. Development of heat pipe reactor modeling in SAM[R]. Chicago, USA: Nuclear Science and Engineering Division, Argonne National Laboratory, 2019.
|
[8] |
PANDA K, DULERA I, BASAK A. Numerical simulation of high temperature sodium heat pipe for passive heat removal in nuclear reactors[J]. Nuclear Engineering and Design, 2017(323): 376-385.
|
[9] |
秋穗正, 张泽秦, 张智鹏, 等. 海洋静默式热管反应堆热工水力特性研究[J]. 原子能科学技术, 2022, 56(6): 989-1004.
doi: 10.7538/yzk.2022.youxian.0339
|
|
QIU Suizheng, ZHANG Zeqin, ZHANG Zhipeng, et al. Study on thermal-hydraulic characteristics of ocean silent heat pipe cooled reactor[J]. Atomic Energy Science and Technology, 2022, 56(6): 989-1004.
doi: 10.7538/yzk.2022.youxian.0339
|
[10] |
白冰鹤. 高温热管内部流动相变强化传热研究[D]. 北京: 华北电力大学, 2021.
|
|
BAI Binghe. Research on internal flow-phase change and heat transfer enhancement of high temperature heat pipe[D]. Beijing: North China Electric Power University, 2021.
|
[11] |
SHI S, LIU Y, YILGOR I, et al. A two-phase three-field modeling framework for heat pipe application in nuclear reactors[J]. Annals of Nuclear Energy, 2022(165): 108770.
|
[12] |
LEE W, SON G. Bubble dynamics and heat transfer during nucleate boiling in a microchannel[J]. Numerical Heat Transfer, Part A: Applications, 2008, 53(10): 1074-1090.
|
[13] |
STEPHAN P, BUSSE C. Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls[J]. International Journal of Heat and Mass Transfer, 1992, 35(2): 383-391.
|
[14] |
WANG H, GARIMELLA S V, MURTHY J Y. Characteristics of an evaporating thin film in a microchannel[J]. International Journal of Heat and Mass Transfer, 2007, 50(19/20): 3933-3942.
|
[15] |
KUNKELMANN C. Numerical modeling and investigation of boiling phenomena[D]. Darmstadt,Germany: Technische Universität, 2011.
|
[16] |
BATZDORF S. Heat transfer and evaporation during single drop impingement onto a superheated wall[D]. Darmstadt, Germany: Technische Universität, 2015.
|
[17] |
LAY J H, DHIR V K. Shape of a vapor stem during nucleate boiling of saturated liquids[J]. Journal of Heat Transfer, 1995, 117(2): 394-401.
|
[18] |
CHO H J, PRESTON D J, ZHU Y, et al. Nanoengineered materials for liquid-vapour phase-change heat transfer[J]. Nature Reviews Materials, 2016, 2(2): 1-17.
|
[19] |
LI Y, CHEN H, XIAO S, et al. Ultrafast diameter-dependent water evaporation from nanopores[J]. Acs Nano, 2019, 13(3): 3363-3372.
doi: 10.1021/acsnano.8b09258
pmid: 30836750
|
[20] |
DAVOODABADI A, GHASEMI H. Evaporation in nano/molecular materials[J]. Advances in Colloid and Interface Science, 2021, 290: 102385.
|
[21] |
XIAO S, MENG K, XIE Q, et al. Edge-enhanced ultrafast water evaporation from graphene nanopores[J]. Cell Reports Physical Science, 2022, 3(6): 1-15.
|
[22] |
赵亚溥. 表面与界面物理力学[M]. 北京: 科学出版社, 2012.
|
|
ZHAO Yapu. Surface and interface physical mechanics[M]. Beijing: Science Press, 2012.
|
[23] |
IYER S, KUMAR A, COVENTRY J, et al. Micro-scale heat transfer modelling of the contact line region of a boiling-sodium bubble[J]. International Journal of Heat and Mass Transfer, 2020, 160: 120106.
|
[24] |
NARAYANAN S, FEDOROV A G, JOSHI Y K. Interfacial transport of evaporating water confined in nanopores[J]. Langmuir, 2011, 27(17): 10666-10676.
doi: 10.1021/la201807a
pmid: 21749136
|
[25] |
CHOU C Y, DUAN C H. Surface charge enhanced kinetically-limited evaporation in nanopores[J]. International Journal of Heat and Mass Transfer, 2023, 204: 123865.
|
[26] |
WAYNER JR P, KAO Y, LACROIX L. The interline heat-transfer coefficient of an evaporating wetting film[J]. International Journal of Heat and Mass Transfer, 1976, 19(5): 487-492.
|
[27] |
ISRAELACHVILI J N. Intermolecular and surface forces[M]. 3rd ed. California, USA: Elsevier Academic Press, 2011.
|
[28] |
SCHRAGE R. A theoretical study of interphase mass transfer[M]. New York, USA: Columbia University Press, 1953.
|
[29] |
THOMSON W. On the equilibrium of vapour at a curved surface of liquid[J]. Proceedings of the Royal Society of Edinburgh, 1872, 7: 63-68.
|
[30] |
CAREY V P. Liquid-vapor phase-change phenomena[M]. 3rd ed. New York, USA: CRS Press, 2020.
|
[31] |
REAY D, MCGLEN R, KEW P. Heat pipes:Theory, design and applications[M]. 6th ed. Oxford, UK: Butterworth-Heinemann, 2013.
|
[32] |
VALENCIA J J, QUESTED P N. Thermophysical properties[M]//ASM handbook. USA: ASM, 2008: 468-481.
|
[33] |
RAJ R, KUNKELMANN C, STEPHAN P, et al. Contact line behavior for a highly wetting fluid under superheated conditions[J]. International Journal of Heat and Mass Transfer, 2012, 55(9/10): 2664-2675.
|
[34] |
HU Z, GONG S. Mesoscopic model for disjoining pressure effects in nanoscale thin liquid films and evaporating extended meniscuses[J]. Langmuir, 2023, 39(37): 13359-13370.
doi: 10.1021/acs.langmuir.3c02068
pmid: 37677082
|
[35] |
HANKS D F, LU Z, SIRCAR J, et al. High heat flux evaporation of low surface tension liquids from nanoporous membranes[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7232-7238.
|
[36] |
VAARTSTRA G, ZHANG L, LU Z, et al. Capillary-fed, thin film evaporation devices[J]. Journal of Applied Physics, 2020, 128(13): 130901.
|
[37] |
杨海旺, 代智文, 王成龙. 碱金属高温热管传热特性研究综述[J]. 热加工工艺, 2022, 51(20): 1-7.
|
|
YANG Haiwang, DAI Zhiwen, WANG Chenglong. Review on transferring characteristics of alkali metal high temperature heat pipe[J]. Hot Working Technology, 2022, 51(20): 1-7.
|