Journal of Shanghai Jiao Tong University ›› 2025, Vol. 59 ›› Issue (2): 165-174.doi: 10.16183/j.cnki.jsjtu.2023.262
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
MENG Yu1, GUO Rui1, SHI Zichuan2(), XUE Junyi1, LÜ Jiawen1, FAN Feilong2
Received:
2023-06-25
Revised:
2023-08-06
Accepted:
2023-09-18
Online:
2025-02-28
Published:
2025-03-11
CLC Number:
MENG Yu, GUO Rui, SHI Zichuan, XUE Junyi, LÜ Jiawen, FAN Feilong. Robustly Coordinated Operation for Flexible Resources in Low-Carbon Park with High Penetration of Wind Power[J]. Journal of Shanghai Jiao Tong University, 2025, 59(2): 165-174.
Tab.1
Key parameters of energy storages
参数 | 取值 | 参数 | 取值 |
---|---|---|---|
氢储能最大容量/(MW·h) | 3 | 电池充放最大功率 | 240 |
氢储能最小容量/(kW·h) | 600 | 电池充放效率 | 0.92 |
电解装置最大功率/MW | 1 | 天然气储能最小容量/(kW·h) | 0 |
燃料电池最大功率/kW | 400 | 天然气储能最大容量/(MW·h) | 1.2 |
电解装置效率 | 0.74 | 甲烷化装置最大功率/kW | 600 |
燃料电池效率 | 0.5 | 燃气轮机最大功率/kW | 600 |
电化学储能最小容量/(kW·h) | 320 | 甲烷化装置效率 | 0.75 |
电化学储能最大容量/(kW·h) | 80 | 燃气轮机效率 | 0.34 |
[1] | QIU H F, GU W, XU Y L, et al. Tri-level mixed-integer optimization for two-stage microgrid dispatch with multi-uncertainties[J]. IEEE Transactions on Power Systems, 2020, 35(5): 3636-3647. |
[2] | 隋鑫, 卢盛阳, 苏安龙, 等. 计及风电和柔性负荷的核电多目标优化调度研究[J]. 中国电机工程学报, 2019, 39(24): 7232-7241. |
SUI Xin, LU Shengyang, SU Anlong, et al. Research on multi-objective optimal scheduling of nuclear power considering wind power and flexible load[J]. Proceedings of the CSEE, 2019, 39(24): 7232-7241. | |
[3] | 林顺富, 倪凌凡, 姜恩宇, 等. 计及风电出力不确定性的海上孤岛微电网动态激励优化调度[J]. 电网技术, 2023, 47(6): 2353-2369. |
LIN Shunfu, NI Lingfan, JIANG Enyu, et al. Dynamic excitation optimization scheduling of offshore isolated microgrid with uncertainty of wind power[J]. Power System Technology, 2023, 47(6): 2353-2369. | |
[4] | 孙鹤旭, 李争, 陈爱兵, 等. 风电制氢技术现状及发展趋势[J]. 电工技术学报, 2019, 34(19): 4071-4083. |
SUN Hexu, LI Zheng, CHEN Aibing, et al. Current status and development trend of hydrogen production technology by wind power[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4071-4083. | |
[5] | 何光层, 张栋梁, 朱红杰, 等. 考虑风储协调运行的频率控制策略研究[J]. 电工技术, 2020(11): 9-13. |
HE Guangceng, ZHANG Dongliang, ZHU Hongjie, et al. Study on frequency control strategy considering coordinated operation of wind and storage[J]. Electric Engineering, 2020(11): 9-13. | |
[6] | 刘艳, 王建涛, 王文杰. 计及静态电压稳定性的含氢储能电力系统鲁棒优化调度[J]. 华北电力大学学报(自然科学版), 2025, 52(1): 22-36. |
LIU Yan, WANG Jiantao, WANG Wenjie. Robust optimal scheduling of power systems with hydrogen energy storage regarding static voltage stability[J]. Journal of North China Electric Power University (Natural Science Edition), 2025, 52(1): 22-36. | |
[7] | 荆涛, 陈庚, 王子豪, 等. 风光互补发电耦合氢储能系统研究综述[J]. 中国电力, 2022, 55(1): 75-83. |
JING Tao, CHEN Geng, WANG Zihao, et al. Research overview on the integrated system of wind-solar hybrid power generation coupled with hydrogen-based energy storage[J]. Electric Power, 2022, 55(1): 75-83. | |
[8] | 支欣, 岳福音, 葛玉林. 综合能源系统的运行优化配置分析[J]. 自动化与仪器仪表, 2020(8): 132-137. |
ZHI Xin, YUE Fuyin, GE Yulin. Analysis on optimal allocation of comprehensive energy system[J]. Automation & Instrumentation, 2020(8): 132-137. | |
[9] | 王伟, 贺彬, 张爱芳, 等. 电池储能协同火电机组参与系统调频控制策略研究[J]. 中国测试, 2022, 48 (Sup.2): 1-7. |
WANG Wei, HE Bin, ZHANG Aifang, et al. Research on battery energy storage in cooperation with thermal power units to participate in system frequency regulation control strategy[J]. China Measurement & Test, 2022, 48 (Sup.2): 1-7. | |
[10] | 徐桂芝, 梁丹曦, 宋洁, 等. 风-光-氢-储综合能源系统日前经济调度[J]. 现代电力, 2022, 40: 1-8. |
XU Guizhi, LIANG Danxi, SONG Jie, et al. Day-ahead economic dispatch of wind-photovoltaic-HESS-BESS integrated energy system[J]. Modern Electric Power, 2022, 40: 1-8. | |
[11] | MA Z T, TIAN T A, CUI Q, et al. Rapid sizing of a hydrogen-battery storage for an offshore wind farm using convex programming[J]. International Journal of Hydrogen Energy, 2023, 48(58): 21946-21958. |
[12] | 郭成威, 田书, 刘明杭. 含氢储能的多源联合发电系统调度研究[J]. 电子科技, 2023, 36(2): 61-66. |
GUO Chengwei, TIAN Shu, LIU Minghang. Research on dispatching of multi-source combined power generation system containing hydrogen energy storage[J]. Electronic Science and Technology, 2023, 36(2): 61-66. | |
[13] |
顾慧杰, 彭超逸, 孙书豪, 等. 风电-光伏-电制氢-抽蓄零碳电力系统短期生产模拟模型[J]. 上海交通大学学报, 2023, 57(5): 505-512.
doi: 10.16183/j.cnki.jsjtu.2022.054 |
GU Huijie, PENG Chaoyi, SUN Shuhao, et al. Short-term production simulation model of wind power-photovoltaic-hydrogen production-zero carbon storage power system[J]. Journal of Shanghai Jiao Tong University, 2023, 57(5): 505-512. | |
[14] | 王晶. 计及P2G与CCHP联供机组的微能源网多目标优化模型研究[D]. 北京: 华北电力大学, 2022. |
WANG Jing. Research on multi-objective optimization model of micro-energy network including P2G and CCHP combined power supply units[D]. Beijing: North China Electric Power University, 2022. | |
[15] | 樊国旗, 霍超, 李小腾, 等. 含P2G的多能源网优化调度研究[J]. 四川电力技术, 2022, 45(2): 67-73. |
FAN Guoqi, HUO Chao, LI Xiaoteng, et al. Research on optimal scheduling of multi-energy network with P2G[J]. Sichuan Electric Power Technology, 2022, 45(2): 67-73. | |
[16] | 孟冰冰, 郭丰慧, 胡林献, 等. 考虑天然气-电力耦合的多能源系统风电消纳分析[J]. 电力工程技术, 2019, 38(6): 2-8. |
MENG Bingbing, GUO Fenghui, HU Linxian, et al. Wind abandonment analysis of multi-energy systems considering gas-electricity coupling[J]. Electric Power Engineering Technology, 2019, 38(6): 2-8. | |
[17] |
朱海南, 王娟娟, 陈兵兵, 等. 考虑经济性与碳排放的电-气综合能源系统多目标规划[J]. 上海交通大学学报, 2023, 57(4): 422-431.
doi: 10.16183/j.cnki.jsjtu.2021.513 |
ZHU Hainan, WANG Juanjuan, CHEN Bingbing, et al. Multi-objective planning of power-gas integrated energy system considering economy and carbon emission[J]. Journal of Shanghai Jiao Tong University, 2023, 57(4): 422-431. | |
[18] | 时瑞廷, 杨贺钧, 马英浩, 等. 计及峰谷平滑效益的需求响应和电池储能系统调度联合优化策略[J]. 电力自动化设备, 2023, 43(8): 49-55. |
SHI Ruiting, YANG Hejun, MA Yinghao, et al. Joint optimization strategy of demand response and battery energy storage system dispatch considering peak-valley smoothing benefit[J]. Electric Power Automation Equipment, 2023, 43(8): 49-55. | |
[19] | 梁剑, 余虎, 杨高才, 等. 电池储能技术在风电系统调峰优化中的应用[J]. 电力信息与通信技术, 2020, 18(10): 67-73. |
LIANG Jian, YU Hu, YANG Gaocai, et al. Application of battery energy storage technology in peak shaving optimization of wind power system[J]. Electric Power Information and Communication Technology, 2020, 18(10): 67-73. | |
[20] | 易林, 张玉荣, 李杨, 等. 低碳经济下含风储联合电力系统优化调度[J]. 水电能源科学, 2018, 36(4): 213-216. |
YI Lin, ZHANG Yurong, LI Yang, et al. Optimal dispatching of power system with wind power and BESS under low-carbon economy[J]. Water Resources and Power, 2018, 36(4): 213-216. | |
[21] | 韩子娇, 那广宇, 董鹤楠, 等. 考虑灵活性供需平衡的含电转氢综合能源系统鲁棒优化调度[J]. 电力系统保护与控制, 2023, 51(6): 161-169. |
HAN Zijiao, NA Guangyu, DONG Henan, et al. Robust optimal operation of integrated energy system with P2H considering flexibility balance[J]. Power System Protection and Control, 2023, 51(6): 161-169. | |
[22] | 顾雪平, 白岩松, 李少岩, 等. 考虑风电不确定性的电力系统恢复全过程两阶段鲁棒优化方法[J]. 电工技术学报, 2022, 37(21): 5462-5477. |
GU Xueping, BAI Yansong, LI Shaoyan, et al. Two stage robust optimization method for the whole-process power system restoration considering wind power uncertainty[J]. Transactions of China Electrotechnical Society, 2022, 37(21): 5462-5477. | |
[23] | 岑有奎, 任建文, 张豪林. 基于氢储能的含大规模风电电力系统经济调度[J]. 科学技术与工程, 2022, 22(20): 8727-8733. |
CEN Youkui, REN Jianwen, ZHANG Haolin. Economic dispatch of power system containing large-scale wind power based on hydrogen energy storage[J]. Science Technology and Engineering, 2022, 22(20): 8727-8733. | |
[24] |
陆秋瑜, 于珍, 杨银国, 等. 考虑源荷功率不确定性的海上风力发电多微网两阶段优化调度[J]. 上海交通大学学报, 2022, 56(10): 1308-1316.
doi: 10.16183/j.cnki.jsjtu.2021.409 |
LU Qiuyu, YU Zhen, YANG Yinguo, et al. Two-stage optimal schedule of offshore wind-power-integrated multi-microgrid considering uncertain power of sources and loads[J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1308-1316. | |
[25] | Elia Transmission Belgium SA. Elia open data[DB/OL]. (2023-01-15) [2023-01-16]. https://opendata.elia.be/pages/home/. |
[26] | ZHANG C, XU Y, LI Z M, et al. Robustly coordinated operation of a multi-energy microgrid with flexible electric and thermal loads[J]. IEEE Transactions on Smart Grid, 2019, 10(3): 2765-2775. |
[27] | FAN F L, ADITYA V, XU Y, et al. Robustly coordinated operation of a ship microgird with hybrid propulsion systems and hydrogen fuel cells[J]. Applied Energy, 2022, 312: 118738. |
[28] | BLANCO H, NIJS W, RUF J, et al. Potential of Power-to-Methane in the EU energy transition to a low carbon system using cost optimization[J]. Applied Energy, 2018, 232: 323-340. |
[29] | POULLIKKAS A. An overview of current and future sustainable gas turbine technologies[J]. Renewable and Sustainable Energy Reviews, 2005, 9(5): 409-443. |
[30] | IBRAHIM T K, BASRAWI F, AWAD O I, et al. Thermal performance of gas turbine power plant based on exergy analysis[J]. Applied Thermal Engineering, 2017, 115: 977-985. |
[1] | LIU Fei, CHE Yanying, TIAN Xu, XU Decao, ZHOU Huijie, LI Zhiyi. Cost Sharing Mechanisms of Pumped Storage Stations in the New-Type Power System: Review and Prospect [J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 757-768. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 187
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 201
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||