Journal of Shanghai Jiao Tong University ›› 2024, Vol. 58 ›› Issue (5): 585-599.doi: 10.16183/j.cnki.jsjtu.2022.360
• New Type Power System and the Integrated Energy • Next Articles
SONG Meng1(), LIN Gujing1, MENG Jing1, GAO Ciwei1, CHEN Tao1, XIA Shiwei2, BAN Mingfei3
Received:
2022-09-13
Revised:
2022-11-09
Accepted:
2022-12-13
Online:
2024-05-28
Published:
2024-06-17
CLC Number:
SONG Meng, LIN Gujing, MENG Jing, GAO Ciwei, CHEN Tao, XIA Shiwei, BAN Mingfei. Key Technologies and Applications of Shared Energy Storage[J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 585-599.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2022.360
Tab.1
Summary and comparison of pricing mechanisms of shared energy storage
类型 | 交易品种 | 应用场景 | 优点 | 缺点 | 参考文献 | |
---|---|---|---|---|---|---|
固定电价 | 单位功率/容量、流量、定制套餐 | 适用于对价格敏感度不大但用户需求和偏好明显的场景 | 价格固定,与时间、供需关系等无关,消除了用户间的竞争 | 价格制定困难,定价过高会降低用户购买积极性、过低会延迟储能投资回收 | [ | |
分时电价 | 功率 | 适用于明显价格套利和增加光伏渗透率的场景 | 有利于刺激和鼓励用户购买共享储能服务进行移峰填谷和价格套利,优化用电方式 | 应用场景有限 | [ | |
拍卖机制 | 功率、容量 | 适用于买/卖参与方数量多、投标偏好复杂的场景 | 价格能够很好反映供需关系和用户偏好,并使社会福利最大化 | 参与方过多、组合机制复杂的情况下会使求解非常困难 | [ | |
主从博弈 | 功率、容量 | 适用于共享储能运营商、多用户处于竞争环境中且存在相互冲突的利益诉求的场景 | 可以权衡多方利益诉求,重视个体理性 | 可能导致博弈均衡偏离社会福利最优点 | [ | |
合作 博弈 | 夏普 利值 | 功率(主要针对成本、效益进行分配) | 适用于多主体共同投资共享储能的场景,例如社区储能、具有合作关系的云储能等 | 按边际贡献分配,体现公平性 | 计算复杂度大,可能导致联盟不稳定 | [ |
核仁 | 按平均主义下的联盟剩余进行分配,体现稳定性 | 计算复杂度随联盟成员数量的增加而递增 | [ | |||
纳什 谈判 | 通过谈判达成共识,体现效率性 | 谈判破裂场景数据获取困难 | [ |
Tab.2
Comparison and summary of power use right and capacity use right
交易品种 | 实体资源分配 | 优点 | 缺点 | 应用场景 | |
---|---|---|---|---|---|
功率使用权 | 充电/放电功率+对应的容量和初始能量 | 各时段储能充放电功率固定,便于安排控制策略和发电计划 | 灵活性差 | 适用于未安装可再生能源装置或柔性负荷较少的用户,在已知电网峰谷电价的情况下,实现峰谷套利 | |
容量使用权 | 容量+对应的充电/放电功率和初始能量 | 各时段储能容量固定,充放电功率可灵活调整 | 各时段储能充放电功率不固定,不确定性大 | 适用于存在储能独立操作需求的用户,如安装屋顶光伏等可再生能源或有较多柔性可调负荷的用户,通过为电网提供辅助服务等来提高收益 |
Tab.4
Comparison of private and public SES structures
结构 | 模式 | 实体拥有者 | 交易品种 | 第三方运营商 | 优缺点 | 应用场景 |
---|---|---|---|---|---|---|
私有储能共享结构 | 电力共享模式 | 独立用户 | 能量 | 无 | 利用储能空闲能量进行交易,实现隐私保护;但仅限能量交易,储能设备利用率提高有限,且要求每个用户都配备储能设施 | 适用于用户数量较少且用户均配置了储能的能源交易场景 |
资源再分配模式(特斯拉) | 独立用户 | 容量使用权(包括初始能量) | 虚拟聚合器 | 用户可自行调整可供共享的功率及容量,从而提高储能设备利用率;但仍要求每个用户都配备储能设施,且效益分配具有一定难度 | 适用于用户数量较多且用户均配置了储能的容量共享场景 | |
公共储能共享结构 | 社区储能模式 | 所有用户集资投建并共享 | 功率使用权+ 容量使用权 | 均可 | 用户无需自行配备储能设施,但需出资投建公共储能设备,成本、效益分配具有一定难度 | 适用于邻近范围内的社区、楼宇 |
云储能模式 | 共享储能运营商集资投建 | 功率使用权+ 容量使用权 | 有 | 用户无需自行配备或投资建设储能设施,可按需购买储能服务;共享储能运营商可利用规模经济、需求互补性等盈利,但在储能规模的配置上难度较大 | 不仅适用于邻近范围内的社区、楼宇,也适用于广域范围上的用户、微网、配网系统运营商 |
Tab.5
Demonstration projects of SES engineering
项目名称 | 国家 | 公司 | 时间 | 规模 | 类型 | 特色 |
---|---|---|---|---|---|---|
EconamicGrid[ | 德国 | SENEC.IES | 2009年 | 超过6000个储能系统 | 负荷侧分布式光伏+储能 | 帮助2000个参与项目的用户获取“免费电力” |
青海共享储能[ | 中国 | 国家电网公司 | 2019年 | 2座储能电站,总容量为82 MW/164 MW·h | 电源侧/电网侧新能源+储能 | 中国首个共享储能调峰辅助服务市场 |
Barásoain’s pilot project[ | 西班牙 | Acciona energia | 2018年 | 1个1 MW/0.39 MW·h的快速反应电池,1个自主性更强的慢速反应电池 | 电源侧风电 厂+储能 | 采用独特的“Store-Chain”技术,使可再生资源在发电高峰期能被完全消纳 |
The Alkimos Beach Trial[ | 澳大利亚 | Synergy | 2016年 | 1.1 MW·h规模的锂离子储能装置 | 社区共享储能 | 澳大利亚第一个大规模社区电池储能 |
Epplas[ | 德国 | Engie | 2015年 | 16户居民,总容量为287 kW的光伏组件和1个容量为330 kW·h的电池储能系统 | 社区共享储能 | 项目用以缓冲该小村庄的尖峰负荷以及各类测试 |
Living Lab Walldorf[ | 德国 | MVV Energie | 2015年 | 40个家庭和企业组成,储能容量为100 kW·h | 社区共享储能 | 整合了发电机组、光伏系统和热电联产机组 |
Smart Community Speyer[ | 德国 | Stadtwerke Speyer,Japanese New Energy,Industrial Technology Development Organization | 2016年 | 16个用户,1个储能系统,1个热泵 | 社区共享储能 | 设置了两组情况相同的建筑作为参照条件,测试共享储能带来的收益 |
Strombank[ | 德国 | MVV Energy | 2015年 | 1栋公寓住户,1个230 kW·h的储能系统 | 社区共享储能 | 用于公寓用户对电能的错峰储存和使用 |
White Gum Valley[ | 澳大利亚 | Power Ledger | 2017年 | 1个strata company(与各家庭签订输电协定),多个用户及其自身光伏储能系统 | 社区共享储能 | 通过strata company来统一规范管理用户储能和光伏系统的使用权 |
Quartierspeicher Weinsberg[ | 德国 | Kaco new energy | 2013年 | 6栋独户住宅、1栋连体公寓、10栋联排住宅、1栋5户连体公寓 | 社区共享储能 | 共享储能系统与当地的供暖网络、联合热电厂和热泵连接在一起 |
ComEd’s Community Energy Storage (CES)[ | 美国 | Commonwealth Edison Company | 2017年 | 25 kW·h的锂离子电池储能系统 | 社区共享储能 | 该项目主要用于紧急情况下提供电力保障 |
Affordable Student Housing[ | 澳大利亚 | Stucco | 2015年 | 1栋多单元住宅,安装有太阳能电池板和电池网络 | 社区共享储能 | 该项目为澳大利亚第一个实现太阳能电池板和电池网络的能源共享型多单元住宅,实现用户80%的电能自给率 |
[1] | SINSEL S R, RIEMKE R L, HOFFMANN V H. Challenges and solution technologies for the integration of variable renewable energy sources—A review[J]. Renewable Energy, 2020, 145: 2271-2285. |
[2] | SONG M, NEJAD R R, SUN W. Robust distribution system load restoration with time-dependent cold load pickup[J]. IEEE Transactions on Power Systems, 2021, 36(4): 3204-3215. |
[3] | SUN Y S, ZHAO Z X, YANG M, et al. Overview of energy storage in renewable energy power fluctuation mitigation[J]. CSEE Journal of Power and Energy Systems, 2019, 6(1): 160-173. |
[4] | NGUYEN H T, MUHS J W, PARVANIA M. Assessing impacts of energy storage on resilience of distribution systems against hurricanes[J]. Journal of Modern Power Systems and Clean Energy, 2019, 7(4): 731-740. |
[5] | NAZEMI M, MOEINI-AGHTAIE M, FOTUHI-FIRUZABAD M, et al. Energy storage planning for enhanced resilience of power distribution networks against earthquakes[J]. IEEE Transactions on Sustainable Energy, 2020, 11(2): 795-806. |
[6] | SONG M, MENG J, LIN G J, et al. Applications of shared economy in smart grids: Shared energy storage and transactive energy[J]. The Electricity Journal, 2022, 35(5): 107128. |
[7] | MARTIN C J. The sharing economy: A pathway to sustainability or a nightmarish form of neoliberal capitalism?[J]. Ecological Economics, 2016, 121: 149-159. |
[8] | SONG M, CAI Y F, GAO C W, et al. Transactive energy in power distribution systems: Paving the path towards cyber-physical-social system[J]. International Journal of Electrical Power & Energy Systems, 2022, 142: 108289. |
[9] | STORME T, CASIER C, AZADI H, et al. Impact assessments of new mobility services: A critical review[J]. Sustainability, 2021, 13(6): 3074. |
[10] |
PHUA V C. Perceiving Airbnb as sharing economy: The issue of trust in using Airbnb[J]. Current Issues in Tourism, 2019, 22(17): 2051-2055.
doi: 10.1080/13683500.2018.1440539 |
[11] | 乔英俊, 纪雪洪. 发展共享汽车推动汽车强国建设[J]. 中国工程科学, 2018, 20(1): 120-126. |
QIAO Yingjun, JI Xuehong. Developing car sharing to promote an automobile power strategy[J]. Engineering Science, 2018, 20(1): 120-126. | |
[12] | KALATHIL D, WU C Y, POOLLA K, et al. The sharing economy for the electricity storage[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 556-567. |
[13] | SCHÖN O. Business model modularity—A way to gain strategic flexibility?[J]. Controlling & Management, 2012, 56(2): 73-78. |
[14] | TUSHAR W, CHAI B, YUEN C, et al. Energy storage sharing in smart grid: A modified auction-based approach[J]. IEEE Transactions on Smart Grid, 2016, 7(3): 1462-1475. |
[15] | WANG Z M, GU C H, LI F R. Flexible operation of shared energy storage at households to facilitate PV penetration[J]. Renewable Energy, 2018, 116: 438-446. |
[16] | 刘娟, 邹丹平, 陈毓春, 等. “互联网+”的客户侧分布式储能P2P共享模式运营机制及效益探讨[J]. 电网与清洁能源, 2020, 36(4): 97-105. |
LIU Juan, ZOU Danping, CHEN Yuchun, et al. Discussions on operation mechanism and benefits of customer-side distributed energy storage P2P sharing mode of “Internet +”[J]. Advances of Power System & Hydroelectric Engineering, 2020, 36(4): 97-105. | |
[17] | WANG Z M, GU C H, LI F R, et al. Active demand response using shared energy storage for household energy management[J]. IEEE Transactions on Smart Grid, 2013, 4(4): 1888-1897. |
[18] | 陈玥, 刘锋, 魏韡, 等. 需求侧能量共享:概念、机制与展望[J]. 电力系统自动化, 2021, 45(2): 1-11. |
CHEN Yue, LIU Feng, WEI Wei, et al. Energy sharing at demand side: Concept, mechanism and prospect[J]. Automation of Electric Power Systems, 2021, 45(2): 1-11. | |
[19] | 康重庆, 刘静琨, 张宁. 未来电力系统储能的新形态: 云储能[J]. 电力系统自动化, 2017, 41(21): 2-8. |
KANG Chongqing, LIU Jingkun, ZHANG Ning. A new form of energy storage in future power system: Cloud energy storage[J]. Automation of Electric Power Systems, 2017, 41(21): 2-8. | |
[20] | 薛金花, 叶季蕾, 许庆强, 等. 客户侧分布式储能消纳新能源的互动套餐和多元化商业模式研究[J]. 电网技术, 2020, 44(4): 1310-1316. |
XUE Jinhua, YE Jilei, XU Qingqiang, et al. Interactive package and diversified business mode of renewable energy accommodation with client distributed energy storage[J]. Power System Technology, 2020, 44(4): 1310-1316. | |
[21] | ZHAO D W, WANG H, HUANG J W, et al. Virtual energy storage sharing and capacity allocation[J]. IEEE Transactions on Smart Grid, 2020, 11(2): 1112-1123. |
[22] | LIU J K, ZHANG N, KANG C Q, et al. Decision-making models for the participants in cloud energy storage[J]. IEEE Transactions on Smart Grid, 2018, 9(6): 5512-5521. |
[23] | 孙偲, 郑天文, 陈来军, 等. 基于组合双向拍卖的共享储能机制研究[J]. 电网技术, 2020, 44(5): 1732-1739. |
SUN Cai, ZHENG Tianwen, CHEN Laijun, et al. Energy storage sharing mechanism based on combinatorial double auction[J]. Power System Technology, 2020, 44(5): 1732-1739. | |
[24] | BRIJS T, HUPPMANN D, SIDDIQUI S, et al. Auction-based allocation of shared electricity storage resources through physical storage rights[J]. Journal of Energy Storage, 2016, 7: 82-92. |
[25] | ZAIDI B H, BHATTI D M S, ULLAH I. Combinatorial auctions for energy storage sharing amongst the households[J]. Journal of Energy Storage, 2018, 19: 291-301. |
[26] | MEDIWATHTHE C P, SHAW M, HALGAMUGE S, et al. An incentive-compatible energy trading framework for neighborhood area networks with shared energy storage[J]. IEEE Transactions on Sustainable Energy, 2020, 11(1): 467-476. |
[27] | 刘继春, 陈雪, 向月. 考虑共享模式的市场机制下售电公司储能优化配置及投资效益分析[J]. 电网技术, 2020, 44(5): 1740-1750. |
LIU Jichun, CHEN Xue, XIANG Yue. Optimal sizing and investment benefit analysis for energy storage of electricity retailers under market mechanisms considering shared mode[J]. Power System Technology, 2020, 44(5): 1740-1750. | |
[28] | 李咸善, 解仕杰, 方子健, 等. 多微电网共享储能的优化配置及其成本分摊[J]. 电力自动化设备, 2021, 41(10): 44-51. |
LI Xianshan, XIE Shijie, FANG Zijian, et al. Optimal configuration of shared energy storage for multi-microgrid and its cost allocation[J]. Electric Power Automation Equipment, 2021, 41(10): 44-51. | |
[29] | YANG Y, HU G Q, SPANOS C J. Optimal sharing and fair cost allocation of community energy storage[J]. IEEE Transactions on Smart Grid, 2021, 12(5): 4185-4194. |
[30] |
黄铖, 刘海涛, 马丙泰, 等. 基于纳什谈判的共享储能电站优化运行研究[J]. 电力建设, 2022, 43(2): 1-9.
doi: 10.12204/j.issn.1000-7229.2022.02.001 |
HUANG Cheng, LIU Haitao, MA Bingtai, et al. Research on optimal operation of shared energy-storage power station applying Nash negotiation[J]. Electric Power Construction, 2022, 43(2): 1-9.
doi: 10.12204/j.issn.1000-7229.2022.02.001 |
|
[31] | PANKIRAJ J S, YASSINE A, CHOUDHURY S. An auction mechanism for profit maximization of peer-to-peer energy trading in smart grids[J]. Procedia Computer Science, 2019, 151: 361-368. |
[32] | 马云聪, 武传涛, 林湘宁, 等. 一种基于半分布式结构化拓扑的云储能点对点交易策略研究[J]. 中国电机工程学报, 2022, 42(21): 7731-7746. |
MA Yuncong, WU Chuantao, LIN Xiangning, et al. Research on peer-to-peer transaction strategy of cloud energy storage based on semi-distributed structured topology[J]. Proceedings of the CSEE, 2022, 42(21): 7731-7746. | |
[33] | 李建林. 共享储能为青海新能源供应插上腾飞翅膀[J]. 电气时代, 2020(2): 14-15. |
LI Jianlin. Sharing energy storage inserts soaring wings for Qinghai new energy supply[J]. Electric Age, 2020(2): 14-15. | |
[34] | ZHANG W Y, WEI W, CHEN L J, et al. Service pricing and load dispatch of residential shared energy storage unit[J]. Energy, 2020, 202: 117543. |
[35] | CHAKRABORTY P, BAEYENS E, POOLLA K, et al. Sharing storage in a smart grid: A coalitional game approach[J]. IEEE Transactions on Smart Grid, 2019, 10(4): 4379-4390. |
[36] | XIE K, ZHONG W F, LI W J, et al. Distributed capacity allocation of shared energy storage using online convex optimization[J]. Energies, 2019, 12(9): 1642. |
[37] | ZHONG W F, XIE K, LIU Y, et al. Multi-resource allocation of shared energy storage: A distributed combinatorial auction approach[J]. IEEE Transactions on Smart Grid, 2020, 11(5): 4105-4115. |
[38] | CARLI R, DOTOLI M, JANTZEN J, et al. Energy scheduling of a smart microgrid with shared photovoltaic panels and storage: The case of the Ballen marina in Sams?[J]. Energy, 2020, 198: 117188. |
[39] | SIOSHANSI R. Welfare impacts of electricity storage and the implications of ownership structure[J]. The Energy Journal, 2010, 31(2): 173-198. |
[40] | XIAO J W, YANG Y B, CUI S C, et al. A new energy storage sharing framework with regard to both storage capacity and power capacity[J]. Applied Energy, 2022, 307: 118171. |
[41] | 王克道, 陈启鑫, 郭鸿业, 等. 面向可交易能源的储能容量合约机制设计与交易策略[J]. 电力系统自动化, 2018, 42(14): 54-60. |
WANG Kedao, CHEN Qixin, GUO Hongye, et al. Mechanism design and trading strategy for capacity contract of energy storage towards transactive energy[J]. Automation of Electric Power Systems, 2018, 42(14): 54-60. | |
[42] | 董凌, 年珩, 范越, 等. 能源互联网背景下共享储能的商业模式探索与实践[J]. 电力建设, 2020, 41(4): 38-44. |
DONG Ling, NIAN Heng, FAN Yue, et al. Exploration and practice of business model of shared energy storage in energy Internet[J]. Electric Power Construction, 2020, 41(4): 38-44.
doi: 10.3969/j.issn.1000-7229.2020.04.005 |
|
[43] | WANG H, HUANG J W. Incentivizing energy trading for interconnected microgrids[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 2647-2657. |
[44] | NGUYEN S, PENG W, SOKOLOWSKI P, et al. Optimizing rooftop photovoltaic distributed generation with battery storage for peer-to-peer energy trading[J]. Applied Energy, 2018, 228: 2567-2580. |
[45] | 夏元兴, 徐青山, 黄煜, 等. 端对端交易场景下配电网分布式储能的优化配置[J]. 电力系统自动化, 2021, 45(14): 82-89. |
XIA Yuanxing, XU Qingshan, HUANG Yu, et al. Optimal configuration of distributed energy storage for distribution network in peer-to-peer transaction scenarios[J]. Automation of Electric Power Systems, 2021, 45(14): 82-89. | |
[46] | TESLA. Earn cash from your Powerwall and create a cleaner, stronger grid[EB/OL]. (2020-01-01) [2022-09-01]. https://www.tesla.com/connectedsolutions. |
[47] | WANG Y P, SAAD W, HAN Z, et al. A game-theoretic approach to energy trading in the smart grid[J]. IEEE Transactions on Smart Grid, 2014, 5(3): 1439-1450. |
[48] | LIU J K, ZHANG N, KANG C Q, et al. Cloud energy storage for residential and small commercial consumers: A business case study[J]. Applied Energy, 2017, 188: 226-236. |
[49] | TERLOUW T, ALSKAIF T, BAUER C, et al. Multi-objective optimization of energy arbitrage in community energy storage systems using different battery technologies[J]. Applied Energy, 2019, 239: 356-372. |
[50] | ZHOU Y L, CI S, LIN N, et al. Distributed energy management of P2P energy sharing in energy Internet based on cloud energy storage[C]// Proceedings of the Ninth International Conference on Future Energy Systems. New York, USA: ACM, 2018: 173-177. |
[51] | LI S L, ZHU J Z, CHEN Z Y, et al. Double-layer energy management system based on energy sharing cloud for virtual residential microgrid[J]. Applied Energy, 2021, 282: 116089. |
[52] | ALLE. Gratis-Strom Speicherbetreiber dank econamic grid[EB/OL]. (2014-02-19)[2022-09-01]. https://www.haus.co/magazin/gratis-strom-fuer-speicherbetreiber-dank-econamic-grid/. |
[53] | ZENERGY. China’s first domestic market share storage power station operators to start building[EB/OL]. (2020-01-09)[2022-09-01]. https://www.zenergytech.com/news/first-domestic-market-storage-power.html. |
[54] | Michael McGovern. Wind-to-battery aids Acciona integration commitment[EB/OL]. (2018-01-02)[2022-09-01]. https://www.windpowermonthly.com/article/1453181/wind-to-battery-aids-acciona-integration-commitment. |
[55] | SYNERGY. Alkimos Beach energy trial[EB/OL]. (2020-03-12)[2022-09-01]. https://www.synergy.net.au/Our-energy/For-tomorrow/Previous-projects-and-trials/Alkimos-Beach-Energy-Storage-Trial. |
[56] | COLTHORPE A. Pumped hydro and batteries combine at Engie’s new Bavaria project[EB/OL]. (2018-05-31)[2022-09-01]. https://www.energy-storage.news/pumped-hydro-and-batteries-combine-at-engies-new-bavaria-project/. |
[57] | VORLESEN. Projekt: Living Lab Walldorf[EB/OL]. (2021-03-21)[2022-09-01]. https://um.baden-wuerttemberg.de/de/umwelt-natur/nachhaltigkeit/nachhaltige-digitalisierung/projekte/living-lab-walldorf/. |
[58] | ECOS. Smart Community Project Speyer[EB/OL]. (2015-09-17)[2022-09-01]. https://www.ecos.eu/en/services/project-management/smart-community-project-in-speyer.html. |
[59] | CAKE A. Mannheim becomes one of the world’s smartest cities[EB/OL]. (2015-09-22)[2022-09-01]. https://www.theneweconomy.com/business/mannheim-becomes-one-of-the-worlds-smartest-cities. |
[60] | MALANE N. The carbon positive living lab: White Gum Valley[EB/OL]. (2018-06-10)[2022-09-01]. https://www.curtin.edu.au/news/carbon-positive-living-lab-white-gum-valley/. |
[61] | KACO. KACO new energy implements solar energy supply for flagship project[DB/OL]. (2013-01-24)[2022-09-01]. https://www.pv-magazine.com/press-releases/kaco-new-energy-implements-solar-energy-supply-for-flagship-project_10009935/. |
[62] | COMED. ComEd conducting illinois’ first community energy storage pilot[EB/OL]. (2017-03-16)[2022-09-01]. https://www.comed.com/News/Pages/NewsReleases/2017_03_16.aspx. |
[63] | STUCCO. Stucco affordable student housing[EB/OL]. (2015-12-30)[2022-09-01]. http://www.stucco.org.au/solar/. |
[1] | SUN Yi, GE Mingyang, WANG Xianchun, BAO Huiyu, YANG Hongyue, YAO Tao. Multi-Region Optimal Scheduling Strategy for Electric Vehicles Considering Compensation Incentives [J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 636-646. |
[2] | XIAO Yinjing, ZHANG Di, WEI Juan, GE Rui, CHEN Dawei, YANG Guixing, YE Zhiliang. Dynamic Optimization of Carbon Reduction Pathways in Coastal Metropolises Considering Hidden Influence of Decarbonization on Energy Demand [J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 600-609. |
[3] | YE Lun, OUYANG Xu, YAO Jiangang, YANG Shengjie, YIN Jungang. Reliability Index Calculation and Reserve Capacity Optimization Considering Multiple Uncertainties [J]. Journal of Shanghai Jiao Tong University, 2024, 58(1): 30-39. |
[4] | YU Miao, HU Jingxuan, ZHANG Shouzhi, WEI Jingjing, SUN Jianqun, WU Yixiao. Fast Stability of New Power System Based on a PMU Gradient Dynamic Deviation Method [J]. Journal of Shanghai Jiao Tong University, 2024, 58(1): 40-49. |
[5] | GUO Yongtao, XIANG Yue, LIU Junyong. Optimal Planning of Power Systems with Flexible Resources for High Penetrated Renewable Energy Accommodation [J]. Journal of Shanghai Jiao Tong University, 2023, 57(9): 1146-1155. |
[6] | XI Xinze, XING Chao, QIN Risheng, HE Tingyi, HE Peng, MENG Xian, CHENG Chunhui. Characteristics of Short-Circuit Current in Distribution Network with Doubly-Fed Wind Power System [J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 921-927. |
[7] | LI Junshuang, HU Yan, TAI Nengling. Collaborative Optimization Scheduling of 5G Base Station Energy Storage and Distribution Network Considering Communication Load and Power Supply Reliability [J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 791-802. |
[8] | YE Zhiliang, LI Canbing, ZHANG Yongjun, LI Licheng, XIAO Yinjing, WU Yuhang, TAI Nengling. Optimization of Day-Ahead Dispatch Time Resolution in Power System with a High Proportion of Climate-Sensitive Renewable Energy Sources [J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 781-790. |
[9] | JIANG Si, FANG Sidun. Review of Energy Efficiency Management for Logistic Center Microgrid Toward Dual-Carbon Goal [J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 769-780. |
[10] | GU Huijie, PENG Chaoyi, SUN Shuhao, LIU Mingtao, XIE Jun, SHI Xionghua, BAO Yong. A Short-Term Production Simulation Model of Wind-PV-Hydrogen-Pumped Storage Zero Carbon Power System [J]. Journal of Shanghai Jiao Tong University, 2023, 57(5): 505-512. |
[11] | HUANG Yuanming, ZHANG Yuxin, XIA Zanyang, WANG Haohao, WU Mingxing, WANG Ning, CHEN Qing, ZHU Tao, CHEN Xinyu. Power System Planning Considering Demand Response Resources and Capacity Value of Energy Storage [J]. Journal of Shanghai Jiao Tong University, 2023, 57(4): 432-441. |
[12] | TANG Zhen, HAO Lihua, FENG Jing. Online Estimation of Power Shortage in Power Systems Driven by Local Frequency Measurement Data [J]. Journal of Shanghai Jiao Tong University, 2023, 57(4): 403-411. |
[13] | LI Hongtao, YANG Linlin, QU Xiaoqi, SUN Tao. Engineering Exploration and Practice of Key Technology for Floating Offshore Wind Turbine Equipment [J]. Ocean Engineering Equipment and Technology, 2023, 10(2): 79-88. |
[14] | LIU Didi, YANG Yifei, YANG Yuhui, ZOU Yanli, WANG Xiaohua, LI Xin. Management and Optimal Control Algorithm for Electric Vehicle Charging in Random Environment [J]. Journal of Shanghai Jiao Tong University, 2023, 57(1): 1-9. |
[15] | FU Yang, DING Zhiyin, MI Yang. Frequency Control Strategy for Interconnected Power Systems with Time Delay Considering Optimal Energy Storage Regulation [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1128-1138. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||