[1] |
RAO F, DING K Y, ZHOU Y X, et al. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing[J]. Science, 2017, 358(6369): 1423-1427.
doi: 10.1126/science.aao3212
pmid: 29123020
|
[2] |
李晓云, 陈后鹏, 雷宇, 等. 一种基于相变存储器的高速读出电路设计[J]. 上海交通大学学报, 2019, 53(8): 936-942.
|
|
LI Xiaoyun, CHEN Houpeng, LEI Yu, et al. A high-speed read circuit for phase-change random-access memory[J]. Journal of Shanghai Jiao Tong University, 2019, 53(8): 936-942.
|
[3] |
SONG Z T, CAI D L, LI X, et al. High endurance phase change memory chip implemented based on carbon-doped Ge2Sb2Te5 in 40 nm node for embedded application[C]//IEEE International Electron Devices Meeting. San Francisco, California, USA: IEEE, 2018: 27.5. 1-27.5.4.
|
[4] |
吴磊, 蔡道林, 陈一峰, 等. 连续性RESET/SET对相变存储器疲劳特性的影响[J]. 上海交通大学学报, 2021, 55(9): 1134-1141.
|
|
WU Lei, CAI Daolin, CHEN Yifeng, et al. Impact of continuous RESET/SET operations on endurance characteristic of phase change memory[J]. Journal of Shanghai Jiao Tong University, 2021, 55(9): 1134-1141.
|
[5] |
XIE C C, LI X, LEI Y, et al. BIST-based fault diagnosis for PCM with enhanced test scheme and fault-free region finding algorithm[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28(7): 1652-1664.
doi: 10.1109/TVLSI.2020.2986469
URL
|
[6] |
ZHU M, REN K, SONG Z T. Ovonic threshold switching selectors for three-dimensional stackable phase-change memory[J]. MRS Bulletin, 2019, 44(9): 715-720.
doi: 10.1557/mrs.2019.206
URL
|
[7] |
NOÉ P, VERDY A, D’ACAPITO F, et al. Toward ultimate nonvolatile resistive memories: The mechanism behind ovonic threshold switching revealed[J]. Science Advances, 2020, 6(9): 2830.
doi: 10.1126/sciadv.aay2830
pmid: 32158940
|
[8] |
CHENG H Y, CARTA F, CHIEN W C, et al. 3D cross-point phase-change memory for storage-class memory[J]. Journal of Physics D: Applied Physics, 2019, 52(47): 473002.
doi: 10.1088/1361-6463/ab39a0
URL
|
[9] |
CHOI J T, AN B K, KIM T T H, et al. Development of PCM and OTS macro-models for HSPICE compatible simulation[C]//Electron Devices Technology and Manufacturing Conference. Singapore: IEEE, 2019: 463-465.
|
[10] |
CHEN X H, DING F L, HUANG X Q, et al. A robust and efficient compact model for phase-change memory circuit simulations[J]. IEEE Transactions on Electron Devices, 2021, 68(9): 4404-4410.
doi: 10.1109/TED.2021.3098656
URL
|
[11] |
CHEN Z Q, TONG H, CAI W, et al. Modeling and simulations of the integrated device of phase change memory and ovonic threshold switch selector with a confined structure[J]. IEEE Transactions on Electron Devices, 2021, 68(4): 1616-1621.
doi: 10.1109/TED.2021.3059436
URL
|
[12] |
CHEN X H, HU H F, HUANG X Q, et al. A SPICE model of phase change memory for neuromorphic circuits[J]. IEEE Access, 2020, 8: 95278-95287.
doi: 10.1109/ACCESS.2020.2995907
URL
|
[13] |
PIGOT C, BOCQUET M, GILIBERT F, et al. Comprehensive phase-change memory compact model for circuit simulation[J]. IEEE Transactions on Electron Devices, 2018, 65(10): 4282-4289.
doi: 10.1109/TED.2018.2862155
URL
|
[14] |
SONODA K, SAKAI A, MONIWA M, et al. A compact model of phase-change memory based on rate equations of crystallization and amorphization[J]. IEEE Transactions on Electron Devices, 2008, 55(7): 1672-1681.
doi: 10.1109/TED.2008.923740
URL
|
[15] |
WOO J, YU S M. Design space exploration of ovonic threshold switch (OTS) for sub-threshold read operation in cross-point memory arrays[C]//IEEE International Symposium on Circuits and Systems. Sapporo, Japan: IEEE, 2019: 1-5.
|
[16] |
YOO S, LEE H D, LEE S, et al. Electro-thermal model for thermal disturbance in cross-point phase-change memory[J]. IEEE Transactions on Electron Devices, 2020, 67(4): 1454-1459.
doi: 10.1109/TED.2019.2960444
URL
|
[17] |
TITIRSHA T, SONG S H, DAS A, et al. Endurance-aware mapping of spiking neural networks to neuromorphic hardware[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(2): 288-301.
doi: 10.1109/TPDS.2021.3065591
URL
|
[18] |
CHEN W C, YIN W Y, LI E P, et al. Electrothermal investigation on vertically aligned single-walled carbon nanotube contacted phase-change memory array for 3-D ICs[J]. IEEE Transactions on Electron Devices, 2015, 62(10): 3258-3263.
doi: 10.1109/TED.2015.2466674
URL
|
[19] |
HU H F, LIU D Y, CHEN X H, et al. A compact phase change memory model with dynamic state variables[J]. IEEE Transactions on Electron Devices, 2020, 67(1): 133-139.
doi: 10.1109/TED.2019.2956193
URL
|
[20] |
FAZIO A. Advanced technology and systems of cross point memory[C]//IEEE International Electron Devices Meeting. San Francisco, CA, USA: IEEE, 2020: 24.1. 1-24.1.4.
|
[21] |
XIONG F, BAE M H, DAI Y, et al. Self-aligned nanotube-nanowire phase change memory[J]. Nano Letters, 2013, 13(2): 464-469.
doi: 10.1021/nl3038097
pmid: 23259592
|
[22] |
SCOGGIN J, SILVA H, GOKIRMAK A. Field dependent conductivity and threshold switching in amorphous chalcogenides—Modeling and simulations of ovonic threshold switches and phase change memory devices[J]. Journal of Applied Physics, 2020, 128(23): 234503.
doi: 10.1063/5.0027671
URL
|
[23] |
CIL K, DIRISAGLIK F, ADNANE L, et al. Electrical resistivity of liquid Ge2Sb2Te5 based on thin-film and nanoscale device measurements[J]. IEEE Transactions on Electron Devices, 2013, 60(1): 433-437.
doi: 10.1109/TED.2012.2228273
URL
|
[24] |
KIM S, KIM H D, CHOI S J. Intrinsic threshold switching responses in AsTeSi thin film[J]. Journal of Alloys and Compounds, 2016, 667: 91-95.
doi: 10.1016/j.jallcom.2016.01.146
URL
|
[25] |
LIU D Y, ZHANG L N, LIN X N, et al. A smooth and continuous phase change memory SPICE model for improved convergence[C]//IEEE 2nd Electron Devices Technology and Manufacturing Conference. Kobe, Japan: IEEE, 2018: 86-88.
|