Journal of Shanghai Jiao Tong University ›› 2023, Vol. 57 ›› Issue (4): 432-441.doi: 10.16183/j.cnki.jsjtu.2021.477
Special Issue: 《上海交通大学学报》2023年“新型电力系统与综合能源”专题
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
HUANG Yuanming1, ZHANG Yuxin2(), XIA Zanyang2, WANG Haohao1, WU Mingxing1, WANG Ning1, CHEN Qing1, ZHU Tao1, CHEN Xinyu2
Received:
2021-12-01
Revised:
2022-05-13
Accepted:
2022-05-16
Online:
2023-04-28
Published:
2023-05-05
CLC Number:
HUANG Yuanming, ZHANG Yuxin, XIA Zanyang, WANG Haohao, WU Mingxing, WANG Ning, CHEN Qing, ZHU Tao, CHEN Xinyu. Power System Planning Considering Demand Response Resources and Capacity Value of Energy Storage[J]. Journal of Shanghai Jiao Tong University, 2023, 57(4): 432-441.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2021.477
Tab.2
Installed capacity in different demand response resource ratio scenariosGW
机组类型 | 已有 容量 | 新增容量 | ||||
---|---|---|---|---|---|---|
0% | 5% | 10% | 15% | 20% | ||
煤电 | 215.6 | 92.2 | 93.2 | 87.1 | 63.6 | 59.9 |
气电 | 46.0 | 45.6 | 19.1 | 0.0 | 0.0 | 0.0 |
光伏 | 183.9 | 270.5 | 270.2 | 269.1 | 261.7 | 258.0 |
风电 | 110.4 | 705.9 | 705.6 | 705.2 | 709.2 | 712.5 |
储能(2 h) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
储能(4 h) | 0.0 | 86.9 | 87.2 | 88.5 | 91.8 | 93.9 |
储能(6 h) | 0.0 | 44.2 | 43.7 | 41.7 | 34.7 | 30.6 |
储能(12 h) | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
[1] |
MYHRE G, BOUCHER O, BRÉON F M, et al. Declining uncertainty in transient climate response as CO2 forcing dominates future climate change[J]. Nature Geoscience, 2015, 8(3): 181-185.
doi: 10.1038/ngeo2371 |
[2] | 康重庆. 能源互联网促进实现“双碳”目标[J]. 全球能源互联网, 2021, 4(3): 205-206. |
KANG Chongqing. Energy Internet promotes the achievement of carbon peak and neutrality targets[J]. Journal of Global Energy Interconnection, 2021, 4(3): 205-206. | |
[3] |
CHEN X Y, LIU Y X, WANG Q, et al. Pathway toward carbon-neutral electrical systems in China by mid-century with negative CO2 abatement costs informed by high-resolution modeling[J]. Joule, 2021, 5(10): 2715-2741.
doi: 10.1016/j.joule.2021.10.006 URL |
[4] | 舒印彪, 张智刚, 郭剑波, 等. 新能源消纳关键因素分析及解决措施研究[J]. 中国电机工程学报, 2017, 37(1): 1-9. |
SHU Yinbiao, ZHANG Zhigang, GUO Jianbo, et al. Study on key factors and solution of renewable energy accommodation[J]. Proceedings of the CSEE, 2017, 37(1): 1-9. | |
[5] |
EL-KHATTAM W, BHATTACHARYA K, HEGAZY Y, et al. Optimal investment planning for distributed generation in a competitive electricity market[J]. IEEE Transactions on Power Systems, 2004, 19(3): 1674-1684.
doi: 10.1109/TPWRS.2004.831699 URL |
[6] | 鲁宗相, 李海波, 乔颖. 含高比例可再生能源电力系统灵活性规划及挑战[J]. 电力系统自动化, 2016, 40(13): 147-158. |
LU Zongxiang, LI Haibo, QIAO Ying. Power system flexibility planning and challenges considering high proportion of renewable energy[J]. Automation of Electric Power Systems, 2016, 40(13): 147-158. | |
[7] |
ZHANG N, LU X, MCELROY M B, et al. Reducing curtailment of wind electricity in China by employing electric boilers for heat and pumped hydro for energy storage[J]. Applied Energy, 2016, 184: 987-994.
doi: 10.1016/j.apenergy.2015.10.147 URL |
[8] |
HARKER STEELE A J, BURNETT J W, BERGSTROM J C. The impact of variable renewable energy resources on power system reliability[J]. Energy Policy, 2021, 151: 111947.
doi: 10.1016/j.enpol.2020.111947 URL |
[9] | 胡秦然, 丁昊晖, 陈心宜, 等. 美国加州2020年轮流停电事故分析及其对中国电网的启示[J]. 电力系统自动化, 2020, 44(24): 11-18. |
HU Qinran, DING Haohui, CHEN Xinyi, et al. Analysis on rotating power outage in California, USA in 2020 and its enlightenment to power grid of China[J]. Automation of Electric Power Systems, 2020, 44(24): 11-18. | |
[10] | 王一, 朱涛, 张玉欣, 等. 适应中国电力现货市场发展的容量补偿机制初探[J]. 电力系统自动化, 2021, 45(6): 52-61. |
WANG Yi, ZHU Tao, ZHANG Yuxin, et al. Preliminary study on capacity compensation mechanism adapted to development of electricity spot market in China[J]. Automation of Electric Power Systems, 2021, 45(6): 52-61. | |
[11] |
BERTSCH J, GROWITSCH C, LORENCZIK S, et al. Flexibility in Europe’s power sector—An additional requirement or an automatic complement?[J]. Energy Economics, 2016, 53: 118-131.
doi: 10.1016/j.eneco.2014.10.022 URL |
[12] | 黄旭祥, 韩学山, 李家维, 等. 大电网储能与各类电源协同规划[J]. 分布式能源, 2019, 4(5): 67-74. |
HUANG Xuxiang, HAN Xueshan, LI Jiawei, et al. Coordinated planning of energy storage and various power sources in large power grid[J]. Distributed Energy, 2019, 4(5): 67-74. | |
[13] | 姜海洋, 杜尔顺, 金晨, 等. 高比例清洁能源并网的跨国互联电力系统多时间尺度储能容量优化规划[J]. 中国电机工程学报, 2021, 41(6): 2101-2115. |
JIANG Haiyang, DU Ershun, JIN Chen, et al. Optimal planning of multi-time scale energy storage capacity of cross-national interconnected power system with high proportion of clean energy[J]. Proceedings of the CSEE, 2021, 41(6): 2101-2115. | |
[14] |
KARGARIAN A, HUG G, MOHAMMADI J. A multi-time scale co-optimization method for sizing of energy storage and fast-ramping generation[J]. IEEE Transactions on Sustainable Energy, 2016, 7(4): 1351-1361.
doi: 10.1109/TSTE.2016.2541685 URL |
[15] | 杨珺, 李凤婷, 张高航. 考虑灵活性需求的新能源高渗透系统规划方法[J]. 电网技术, 2022, 46(6): 2171-2182. |
YANG Jun, LI Fengting, ZHANG Gaohang. Power system planning method with high new energy penetration considering flexibility requirements[J]. Power System Technology, 2022, 46(6): 2171-2182. | |
[16] | 鉴庆之, 刘晓明, 杨金叶, 等. 考虑需求响应的电力系统灵活性资源优化配置[J]. 现代电力, 2021, 38(3): 286-296. |
JIAN Qingzhi, LIU Xiaoming, YANG Jinye, et al. Optimal allocation of power system flexible resources considering demand response[J]. Modern Electric Power, 2021, 38(3): 286-296. | |
[17] | 何俊. 基于等可信容量的含风光储微电网电源优化规划研究[D]. 武汉: 武汉大学, 2014. |
HE Jun. Optimal power planning of micro grid containing wind PV battery power sources based on equivalent credible capacity theory[D]. Wuhan: Wuhan University, 2014. | |
[18] | 袁小明, 程时杰, 文劲宇. 储能技术在解决大规模风电并网问题中的应用前景分析[J]. 电力系统自动化, 2013, 37(1): 14-18. |
YUAN Xiaoming, CHENG Shijie, WEN Jinyu. Prospects analysis of energy storage application in grid integration of large-scale wind power[J]. Automation of Electric Power Systems, 2013, 37(1): 14-18. | |
[19] |
MCPHERSON M, STOLL B. Demand response for variable renewable energy integration: A proposed approach and its impacts[J]. Energy, 2020, 197: 117205.
doi: 10.1016/j.energy.2020.117205 URL |
[20] | BILLINTON R, HUANG D G. Basic concepts in generating capacity adequacy evaluation[C]// 2006 International Conference on Probabilistic Methods Applied to Power Systems. Stockholm, Sweden: IEEE, 2006: 1-6. |
[21] | GARVER L L. Effective load carrying capability of generating units[J]. IEEE Transactions on Power Apparatus and Systems, 1966, 85(8): 910-919. |
[22] | PUDARUTH G R, LI F. Capacity credit evaluation: A literature review[C]// 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. Nanjing, China: IEEE, 2008: 2719-2724. |
[23] |
MILLS A D, RODRIGUEZ P. A simple and fast algorithm for estimating the capacity credit of solar and storage[J]. Energy, 2020, 210: 118587.
doi: 10.1016/j.energy.2020.118587 URL |
[24] |
ZHOU Y T, MANCARELLA P, MUTALE J. Framework for capacity credit assessment of electrical energy storage and demand response[J]. IET Generation, Transmission & Distribution, 2016, 10(9): 2267-2276.
doi: 10.1049/gtd2.v10.9 URL |
[25] | 张宁, 康重庆, 肖晋宇, 等. 风电容量可信度研究综述与展望[J]. 中国电机工程学报, 2015, 35(1): 82-94. |
ZHANG Ning, KANG Chongqing, XIAO Jinyu, et al. Review and prospect of wind power capacity credit[J]. Proceedings of the CSEE, 2015, 35(1): 82-94. | |
[26] |
HAN X N, CHEN X Y, MCELROY M B, et al. Modeling formulation and validation for accelerated simulation and flexibility assessment on large scale power systems under higher renewable penetrations[J]. Applied Energy, 2019, 237: 145-154.
doi: 10.1016/j.apenergy.2018.12.047 URL |
[27] |
CHEN X Y, LV J J, MCELROY M B, et al. Power system capacity expansion under higher penetration of renewables considering flexibility constraints and low carbon policies[J]. IEEE Transactions on Power Systems, 2018, 33(6): 6240-6253.
doi: 10.1109/TPWRS.2018.2827003 URL |
[1] | YE Lun, OUYANG Xu, YAO Jiangang, YANG Shengjie, YIN Jungang. Reliability Index Calculation and Reserve Capacity Optimization Considering Multiple Uncertainties [J]. Journal of Shanghai Jiao Tong University, 2024, 58(1): 30-39. |
[2] | LIU Chuanbin, JIAO Wenshu, WU Qiuwei, CHEN Jian, ZHOU Qian. Strategy of Wind-Storage Combined System Participating in Power System Secondary Frequency Regulation Based on Model Predictive Control [J]. Journal of Shanghai Jiao Tong University, 2024, 58(1): 91-101. |
[3] | JIANG Enyu, CHEN Yu, SHI Zhengjing, WU Zhecheng, LIN Shunfu, LI Dongdong. A Microgrid Energy Management Strategy Considering Carbon Quota Guided Demand Response [J]. Journal of Shanghai Jiao Tong University, 2023, 57(9): 1126-1136. |
[4] | GUO Yongtao, XIANG Yue, LIU Junyong. Optimal Planning of Power Systems with Flexible Resources for High Penetrated Renewable Energy Accommodation [J]. Journal of Shanghai Jiao Tong University, 2023, 57(9): 1146-1155. |
[5] | YE Zhiliang, LI Canbing, ZHANG Yongjun, LI Licheng, XIAO Yinjing, WU Yuhang, TAI Nengling. Optimization of Day-Ahead Dispatch Time Resolution in Power System with a High Proportion of Climate-Sensitive Renewable Energy Sources [J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 781-790. |
[6] | LI Junshuang, HU Yan, TAI Nengling. Collaborative Optimization Scheduling of 5G Base Station Energy Storage and Distribution Network Considering Communication Load and Power Supply Reliability [J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 791-802. |
[7] | JIANG Si, FANG Sidun. Review of Energy Efficiency Management for Logistic Center Microgrid Toward Dual-Carbon Goal [J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 769-780. |
[8] | WANG Jing, XING Haijun, WANG Huaxin, PENG Sijia. Optimal Scheduling of Integrated Energy System Considering Integration of Electric Vehicles and Load Aggregators [J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 814-823. |
[9] | HAN Zhengqian1(韩正谦),LUO Liwenl*(罗利文),YAo Wei2(姚伟),YIN Shaowen2(尹邵文),CHEN Wei2(陈伟),WANG Yinghui2(王营辉). Spectrum-Sensing Method for Arc Fault Detection in Direct Current System with Lithium Batteries [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 630-637. |
[10] | ZHU Yueyao, QI Tong, WU Xingchen, LIU Di, HUA Haochen. Price-Based Demand Response Mechanism of Prosumer Groups Considering Real-Time Carbon Emission Reduction [J]. Journal of Shanghai Jiao Tong University, 2023, 57(4): 452-463. |
[11] | GAO Chang, LI Hongtao. Key Technologies and Breakthrough Path of Hydrogen Production by Offshore Wind Power [J]. Ocean Engineering Equipment and Technology, 2023, 10(2): 89-94. |
[12] | LI Hongtao, YANG Linlin, QU Xiaoqi, SUN Tao. Engineering Exploration and Practice of Key Technology for Floating Offshore Wind Turbine Equipment [J]. Ocean Engineering Equipment and Technology, 2023, 10(2): 79-88. |
[13] | QIN Wenping, YANG Jingsi, JING Xiang, YAO Hongmin, LI Xiaozhou, ZHANG Xinzhe. Multi-Time-Space Scale Optimal Dispatch of Integrated Energy in Micro-Energy Grid Considering Demand Response [J]. Journal of Shanghai Jiao Tong University, 2023, 57(12): 1583-1596. |
[14] | LI Qian, JIANG Xin, ZHANG Junzhao, DUAN Shijie, JIN Yang. Business Models for Large-Scale Energy Storage Systems to Participate in Electricity Spot Market [J]. Journal of Shanghai Jiao Tong University, 2023, 57(12): 1543-1558. |
[15] | YU Faqiang, ZHANG Mingjie, CHENG Yu, CHEN Dawei, YANG Hanyu, LI Canbing. Optimal Sizing of Grid-Connected Wind-Solar-Biogas Integrated Energy System Considering Demand Response [J]. Journal of Shanghai Jiao Tong University, 2023, 57(1): 10-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||