[1] |
WANG W, YAN G Z, HAN D, et al. Design and testing of a novel gastrointestinal microrobot[J]. Biomedical Microdevices, 2020, 22(4): 1-11.
doi: 10.1007/s10544-019-0454-1
|
[2] |
WANG W, YAN G Z, WANG Z W, et al. A novel expanding mechanism of gastrointestinal microrobot: Design, analysis and optimization[J]. Micromachines, 2019, 10(11): 724.
doi: 10.3390/mi10110724
URL
|
[3] |
蒲鹏先, 颜国正, 王志武, 等. 微型肠道机器人扩张机构与能量接收线圈的设计与实验[J]. 上海交通大学学报, 2019, 53(10): 1143-1150.
|
|
PU Pengxian, YAN Guozheng, WANG Zhiwu, et al. Design and experiment of expanding mechanism and power receiving coil for micro intestinal robot[J]. Journal of Shanghai Jiao Tong University, 2019, 53(10): 1143-1150.
|
[4] |
GAO J Y, YAN G Z, WANG Z W, et al. Design and testing of a motor-based capsule robot powered by wireless power transmission[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(2): 683-693.
doi: 10.1109/TMECH.2015.2497083
URL
|
[5] |
BASAR M, AHMAD M, CHO J, et al. Application of wireless power transmission systems in wireless capsule endoscopy: An overview[J]. Sensors, 2014, 14(6): 10929-10951.
doi: 10.3390/s140610929
pmid: 24949645
|
[6] |
KIM H J, HIRAYAMA H, KIM S, et al. Review of near-field wireless power and communication for biomedical applications[J]. IEEE Access, 2017, 5: 21264-21285.
doi: 10.1109/Access.6287639
URL
|
[7] |
CAMPI T, CRUCIANI S, DE SANTIS V, et al. Near field wireless powering of deep medical implants[J]. Energies, 2019, 12(14): 2720.
doi: 10.3390/en12142720
URL
|
[8] |
NG W M, ZHANG C, LIN D Y, et al. Two-and three-dimensional omnidirectional wireless power transfer[J]. IEEE Transactions on Power Electronics, 2014, 29(9): 4470-4474.
doi: 10.1109/TPEL.2014.2300866
URL
|
[9] |
HA-VAN N, SEO C. Analytical and experimental investigations of omnidirectional wireless power transfer using a cubic transmitter[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1358-1366.
doi: 10.1109/TIE.2017.2733470
URL
|
[10] |
KHAN S R, PAVULURI S K, CUMMINS G, et al. Miniaturized 3-D cross-type receiver for wirelessly powered capsule endoscopy[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(5): 1985-1993.
doi: 10.1109/TMTT.22
URL
|
[11] |
RYU M, KIM J D, CHIN H U, et al. Three-dimensional power receiver for in vivo robotic capsules[J]. Medical & Biological Engineering & Computing, 2007, 45(10): 997-1002.
|
[12] |
温桠妮, 颜国正, 王志武, 等. 肠道机器人三维接收线圈的设计与优化[J]. 上海交通大学学报, 2020, 54(11): 1117-1123.
|
|
WEN Yani, YAN Guozheng, WANG Zhiwu, et al. Design and optimization of three-dimensional receiving coils for intestinal robots[J]. Journal of Shanghai Jiao Tong University, 2020, 54(11): 1117-1123.
|
[13] |
MA G Y, YAN G Z, HE X. Power transmission for gastrointestinal microsystems using inductive coupling[J]. Physiological Measurement, 2007, 28(3): 9-18.
pmid: 17322587
|
[14] |
BEIRANVAND R. Analyzing the uniformity of the generated magnetic field by a practical one-dimensional Helmholtz coils system[J]. Review of Scientific Instruments, 2013, 84(7): 075109.
doi: 10.1063/1.4813275
URL
|
[15] |
WU W F, ZHOU B Q, LIU G, et al. Novel nested saddle coils used in miniature atomic sensors[J]. AIP Advances, 2018, 8(7): 075126.
doi: 10.1063/1.5036605
URL
|
[16] |
KE Q, LUO W J, YAN G Z, et al. Analytical model and optimized design of power transmitting coil for inductively coupled endoscope robot[J]. IEEE Transactions on Biomedical Engineering, 2016, 63(4): 694-706.
doi: 10.1109/TBME.2015.2469137
URL
|
[17] |
GAO J Y, YAN G Z, WANG Z W, et al. A capsule robot powered by wireless power transmission: Design of its receiving coil[J]. Sensors and Actuators A: Physical, 2015, 234: 133-142.
doi: 10.1016/j.sna.2015.08.021
URL
|
[18] |
庄浩宇, 颜国正, 赵凯, 等. 用于肠道机器人的螺旋式平板发射线圈对设计[J]. 光学精密工程, 2021, 29(1): 84-90.
|
|
ZHUANG Haoyu, YAN Guozheng, ZHAO Kai, et al. Design of spiral flat transmitting coil pair for intestinal robot[J]. Optics and Precision Engineering, 2021, 29(1): 84-90.
doi: 10.37188/OPE.20212901.0084
URL
|
[19] |
CHEN W W, YAN G Z, WANG Z W, et al. A wireless capsule robot with spiral legs for human intestine[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2014, 10(2): 147-161.
doi: 10.1002/rcs.1520
pmid: 23843276
|