Journal of Shanghai Jiao Tong University ›› 2022, Vol. 56 ›› Issue (2): 231-241.doi: 10.16183/j.cnki.jsjtu.2020.432
Previous Articles Next Articles
HAO Guocheng1,2,3, ZHANG Bichao1, GUO Juan1, ZHANG Yabing1, SHI Guangyao1, WANG Panpan1, ZHANG Wei1()
Received:
2020-12-19
Online:
2022-02-28
Published:
2022-03-03
Contact:
ZHANG Wei
E-mail:2569691867@qq.com
CLC Number:
HAO Guocheng, ZHANG Bichao, GUO Juan, ZHANG Yabing, SHI Guangyao, WANG Panpan, ZHANG Wei. A High Quality Algorithm of Time-Frequency Analysis and Its Application in Radar Signal Target Detection via LMSCT[J]. Journal of Shanghai Jiao Tong University, 2022, 56(2): 231-241.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2020.432
[1] |
SEJDI$\acute{C}$ E, DJUROVI$\acute{C}$ I, JIANG J. Time-frequency feature representation using energy concentration: An overview of recent advances[J]. Digital Signal Processing, 2009, 19(1):153-183.
doi: 10.1016/j.dsp.2007.12.004 URL |
[2] | 李雄飞, 宋璐, 张小利. 基于协同经验小波变换的遥感图像融合[J]. 吉林大学学报(工学版), 2019, 49(4):1307-1319. |
LI Xiongfei, SONG Lu, ZHANG Xiaoli. Remote sensing image fusion based on cooperative empirical wavelet transform[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(4):1307-1319. | |
[3] |
HAO G C, TAN F, HU X Y, et al. A matching pursuit-based method for cross-term suppression in WVD and its application to the ENPEMF[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(8):1304-1308.
doi: 10.1109/LGRS.8859 URL |
[4] |
HAO G C, BAI Y X, LIU H, et al. The earth’s natural pulse electromagnetic fields for earthquake time-frequency characteristics: Insights from the EEMD-WVD method[J]. Island Arc, 2018, 27(4):e12256.
doi: 10.1111/iar.2018.27.issue-4 URL |
[5] |
YU G, YU M J, XU C Y. Synchroextracting transform[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10):8042-8054.
doi: 10.1109/TIE.2017.2696503 URL |
[6] | 郝国成, 谈帆, 程卓, 等. 强鲁棒性和高锐化聚集度的BGabor-NSPWVD时频分析算法[J]. 自动化学报, 2019, 45(3):566-576. |
HAO Guocheng, TAN Fan, CHENG Zhuo, et al. Time-frequency analysis of BGabor-NSPWVD algorithm with strong robustness and high sharpening concentration[J]. Acta Automatica Sinica, 2019, 45(3):566-576. | |
[7] |
WANG S B, CHEN X F, WANG Y, et al. Nonlinear squeezing time-frequency transform for weak signal detection[J]. Signal Processing, 2015, 113:195-210.
doi: 10.1016/j.sigpro.2015.01.022 URL |
[8] |
GABOR D. Theory of communication. Part 1: The analysis of information[J]. Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, 1946, 93(26):429-441.
doi: 10.1049/ji-3-2.1946.0074 URL |
[9] | DAUBECHIES I. Ten lectures on wavelets[M]. Philadelphia, PA,USA: Society for Industrial and Applied Mathematics, 1992. |
[10] |
BOASHASH B, BLACK P. An efficient real-time implementation of the Wigner-Ville distribution[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, 35(11):1611-1618.
doi: 10.1109/TASSP.1987.1165070 URL |
[11] |
MANN S, HAYKIN S. The chirplet transform: Physical considerations[J]. IEEE Transactions on Signal Processing, 1995, 43(11):2745-2761.
doi: 10.1109/78.482123 URL |
[12] |
YU G, ZHOU Y Q. General linear chirplet transform[J]. Mechanical Systems and Signal Processing, 2016, 70/71:958-973.
doi: 10.1016/j.ymssp.2015.09.004 URL |
[13] |
AUGER F, FLANDRIN P. Improving the readability of time-frequency and time-scale representations by the reassignment method[J]. IEEE Transactions on Signal Processing, 1995, 43(5):1068-1089.
doi: 10.1109/78.382394 URL |
[14] |
DAUBECHIES I, LU J F, WU H T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool[J]. Applied and Computational Harmonic Analysis, 2011, 30(2):243-261.
doi: 10.1016/j.acha.2010.08.002 URL |
[15] |
THAKUR G, WU H T. Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples[J]. SIAM Journal on Mathematical Analysis, 2011, 43(5):2078-2095.
doi: 10.1137/100798818 URL |
[16] |
OBERLIN T, MEIGNEN S, PERRIER V. Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations[J]. IEEE Transactions on Signal Processing, 2015, 63(5):1335-1344.
doi: 10.1109/TSP.2015.2391077 URL |
[17] |
BEHERA R, MEIGNEN S, OBERLIN T. Theoretical analysis of the second-order synchrosqueezing transform[J]. Applied and Computational Harmonic Analysis, 2018, 45(2):379-404.
doi: 10.1016/j.acha.2016.11.001 URL |
[18] |
LI C, LIANG M. Time-frequency signal analysis for gearbox fault diagnosis using a generalized synchrosqueezing transform[J]. Mechanical Systems and Signal Processing, 2012, 26:205-217.
doi: 10.1016/j.ymssp.2011.07.001 URL |
[19] |
LI C, LIANG M. A generalized synchrosqueezing transform for enhancing signal time-frequency representation[J]. Signal Processing, 2012, 92(9):2264-2274.
doi: 10.1016/j.sigpro.2012.02.019 URL |
[20] |
PHAM D H, MEIGNEN S. High-order synchrosqueezing transform for multicomponent signals analysis—With an application to gravitational-wave signal[J]. IEEE Transactions on Signal Processing, 2017, 65(12):3168-3178.
doi: 10.1109/TSP.2017.2686355 URL |
[21] |
YU G, WANG Z H, ZHAO P, et al. Local maximum synchrosqueezing transform: An energy-concentrated time-frequency analysis tool[J]. Mechanical Systems and Signal Processing, 2019, 117:537-552.
doi: 10.1016/j.ymssp.2018.08.006 URL |
[22] |
ZHU X X, ZHANG Z S, LI Z, et al. Multiple squeezes from adaptive chirplet transform[J]. Signal Processing, 2019, 163:26-40.
doi: 10.1016/j.sigpro.2019.05.008 URL |
[23] |
PENG Z K, MENG G, CHU F L, et al. Polynomial chirplet transform with application to instantaneous frequency estimation[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(9):3222-3229.
doi: 10.1109/TIM.2011.2124770 URL |
[24] |
BARANIUK R G, FLANDRIN P, JANSSEN A J E M, et al. Measuring time-frequency information content using the Renyi entropies[J]. IEEE Transactions on Information Theory, 2001, 47(4):1391-1409.
doi: 10.1109/18.923723 URL |
[25] | WILLIAMS W J, BROWN M L, HERO A O. Uncertainty, information, and time-frequency distributions[C]//Advanced Signal Processing Algorithms, Architectures, and Implementations II. San Diego, CA, USA: SPIE, 1991: 144-156. |
[26] |
HAYKIN S, BHATTACHARYA T K. Modular learning strategy for signal detection in a nonstationary environment[J]. IEEE Transactions on Signal Processing, 1997, 45(6):1619-1637.
doi: 10.1109/78.600003 URL |
[1] | WU Da-Wei, HE Chen, JIANG Ling-Ge. Research on Robust GMD-Based Vector Precoding [J]. Journal of Shanghai Jiaotong University, 2011, 45(07): 1046-1049. |
[2] | Shi-Qi-Ming, JIANG Ling-Ge, HE Chen. Robust Vector Precoding with Imperfect Channel State Information [J]. Journal of Shanghai Jiaotong University, 2011, 45(03): 375-0378. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||