[1] |
FAN F R, LIN L, ZHU G, et al. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films[J]. Nano Letters, 2012, 12(6):3109-3114.
doi: 10.1021/nl300988z
URL
|
[2] |
ZHANG X S, SU M, BRUGGER J, et al. Penciling a triboelectric nanogenerator on paper for autonomous power MEMS applications[J]. Nano Energy, 2017, 33:393-401.
doi: 10.1016/j.nanoen.2017.01.053
URL
|
[3] |
CHEN J, WANG Z L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator[J]. Joule, 2017, 1(3):480-521.
doi: 10.1016/j.joule.2017.09.004
URL
|
[4] |
YANG Y, ZHU G, ZHANG H L, et al. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system[J]. ACS Nano, 2013, 7(10):9461-9468.
doi: 10.1021/nn4043157
URL
|
[5] |
肖帮. PTFE基复合材料摩擦起电规律及其对摩擦学特性影响的研究[D]. 合肥: 合肥工业大学, 2017.
|
|
XIAO Bang. Study on the triboelectrification of PTFE composites and its influence on tribological pro-perties[D]. Hefei: Hefei University of Technology, 2017.
|
[6] |
NEAGOE B, TEODORESCU H N, PRAWATYA Y, et al. Experimental bench for studying the relation between the dynamic characteristics of the frictional motion and the electric potential at the surface of polymer slabs in sliding conformal contact[J]. Tribology International, 2017, 111:107-115.
doi: 10.1016/j.triboint.2017.03.006
URL
|
[7] |
SAYFIDINOV K, CEZAN S D, BAYTEKIN B, et al. Minimizing friction, wear, and energy losses by eliminating contact charging[J]. Science Advances, 2018, 4(11): eaau 3808.
|
[8] |
MATSUSAKA S, GHADIRI M, MASUDA H. Electrification of an elastic sphere by repeated impacts on a metal plate[J]. Journal of Physics D: Applied Physics, 2000, 33(18):2311-2319.
doi: 10.1088/0022-3727/33/18/316
URL
|
[9] |
ZHU G, CHEN J, LIU Y, et al. Linear-grating triboelectric generator based on sliding electrification[J]. Nano Letters, 2013, 13(5):2282-2289.
doi: 10.1021/nl4008985
URL
|
[10] |
ZI Y L, NIU S M, WANG J, et al. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators[J]. Nature Communications, 2015, 6:8376.
doi: 10.1038/ncomms9376
URL
|
[11] |
薛超凡, 于敏, 姚举禄, 等. 碳纤维增强树脂基复合材料在低温条件下的微动摩擦磨损性能[J]. 上海交通大学学报, 2018, 52(5):604-611.
|
|
XUE Chaofan, YU Min, YAO Julu, et al. Fretting wear characteristics of carbon fiber reinforced epoxy resin matrix composites in low temperature[J]. Journal of Shanghai Jiao Tong University, 2018, 52(5):604-611.
|
[12] |
孔亚彬, 沈明学, 张执南, 等. 橡胶O形圈/不锈钢配副往复摩擦生热特性[J]. 上海交通大学学报, 2019, 53(11):1352-1358.
|
|
KONG Yabin, SHEN Mingxue, ZHANG Zhinan, et al. Thermal characteristics of reciprocating friction of rubber o-ring against stailess steel surface[J]. Journal of Shanghai Jiao Tong University, 2019, 53(11):1352-1358.
|
[13] |
李薇. 滑动摩擦起电检测装置研制及机理研究[D]. 北京: 北京林业大学, 2019.
|
|
LI Wei. Detection device development and mechanism research of sliding tribo-electrification[D]. Beijing: Beijing Forestry University, 2019.
|
[14] |
何涛, 李金苗, 李成, 等. 基于LabVIEW的往复式摩擦试验机研制[J]. 机械设计与研究, 2020, 36(4):160-165.
|
|
HE Tao, LI Jinmiao, LI Cheng, et al. Development of reciprocating friction testing machine based on LabVIEW[J]. Machine Design & Research, 2020, 36(4):160-165.
|
[15] |
KU I S Y, REDDYHOFF T, CHOO J H, et al. A novel tribometer for the measurement of friction in MEMS[J]. Tribology International, 2010, 43(5/6):1087-1090.
doi: 10.1016/j.triboint.2009.12.029
URL
|
[16] |
HOIĆ M, HRGETIĆ M, DEUR J. Design of a pin-on-disc-type CNC tribometer including an automotive dry clutch application[J]. Mechatronics, 2016, 40:220-232.
doi: 10.1016/j.mechatronics.2016.10.016
URL
|
[17] |
PAN S H, YIN N, ZHANG Z N. Time- & load-dependence of triboelectric effect[J]. Scientific Reports, 2018, 8(1):847-853.
doi: 10.1038/s41598-017-17386-y
URL
|
[18] |
郑有斌, 马韶晨, 冯雁歌, 等. 摩擦起电的界面调控与应用研究[J]. 中国科学: 化学, 2018, 48(12):1514-1530.
|
|
ZHENG Youbin, MA Shaochen, FENG Yange, et al. Investigation on the interface control and utilization of triboelectrification[J]. SCIENTIA SINICA Chimica, 2018, 48(12):1514-1530.
doi: 10.1360/N032018-00200
URL
|
[19] |
ZHANG Z N, YIN N, WU Z S, et al. Research methods of contact electrification: Theoretical simulation and experiment[J]. Nano Energy, 2021, 79:105501.
doi: 10.1016/j.nanoen.2020.105501
URL
|