[1] |
范子杰, 桂良进, 苏瑞意, 等. 汽车轻量化技术的研究与进展[J]. 汽车安全与节能学报, 2014, 5(1):1-16.
|
|
FAN Zijie, GUI Liangjin, SU Ruiyi, et al. Research and development of automotive lightweight technology[J]. Journal of Automotive Safety and Energy, 2014, 5(1):1-16.
|
[2] |
戎琦. 三维机织复合材料的织造技术[J]. 纤维复合材料, 2007, 24(1):31-33.
|
|
RONG Qi. Weaving technology of 3D woven composites[J]. Fiber Composites, 2007, 24(1):31-33.
|
[3] |
JIA X W, XIA Z H, GU B H. Nonlinear numerical predictions of three-dimensional orthogonal woven composite under low-cycle tension using multiscale repeating unit cells[J]. International Journal of Da-mage Mechanics, 2015, 24(3):338-362.
|
[4] |
DAI S, CUNNINGHAM P R. Multi-scale damage modelling of 3D woven composites under uni-axial tension[J]. Composite Structures, 2016, 142:298-312.
doi: 10.1016/j.compstruct.2016.01.103
URL
|
[5] |
朱国华, 成艾国, 王振, 等. 电动车轻量化复合材料车身骨架多尺度分析[J]. 机械工程学报, 2016, 52(6):145-152.
|
|
ZHU Guohua, CHENG Aiguo, WANG Zhen, et al. Analysis of lightweight composite body structure for electrical vehicle using the multiscale approach[J]. Journal of Mechanical Engineering, 2016, 52(6):145-152.
|
[6] |
KIM D H, KIM H G, KIM H S. Design optimization and manufacture of hybrid glass/carbon fiber reinforced composite bumper beam for automobile vehicle[J]. Composite Structures, 2015, 131:742-752
doi: 10.1016/j.compstruct.2015.06.028
URL
|
[7] |
FU X W, RICCI S, BISAGNI C. Minimum-weight design for three dimensional woven composite stiffened panels using neural networks and genetic algorithms[J]. Composite Structures, 2015, 134:708-715.
doi: 10.1016/j.compstruct.2015.08.077
URL
|
[8] |
王庆, 卢家海, 刘钊, 等. 碳纤维增强复合材料汽车保险杠的轻量化设计[J]. 上海交通大学学报, 2017, 51(2):136-141.
|
|
WANG Qing, LU Jiahai, LIU Zhao, et al. A lightweight design of carbon fiber reinforced plastic auto bumper[J]. Journal of Shanghai Jiao Tong University, 2017, 51(2):136-141.
|
[9] |
MESOGITIS T S, SKORDOS A A, LONG A C. Uncertainty in the manufacturing of fibrous thermosetting composites: A review[J]. Composites Part A: Applied Science and Manufacturing, 2014, 57:67-75.
doi: 10.1016/j.compositesa.2013.11.004
URL
|
[10] |
LIU Z, ZHU C, ZHU P, et al. Reliability-based design optimization of composite battery box based on modified particle swarm optimization algorithm[J]. Composite Structures, 2018, 204:239-255.
doi: 10.1016/j.compstruct.2018.07.053
URL
|
[11] |
CHEN X, WANG X J, QIU Z P, et al. A novel reliability-based two-level optimization method for composite laminated structures[J]. Composite Structures, 2018, 192:336-346.
doi: 10.1016/j.compstruct.2018.03.016
URL
|
[12] |
TAO W, LIU Z, ZHU P, et al. Multi-scale design of three dimensional woven composite automobile fender using modified particle swarm optimization algorithm[J]. Composite Structures, 2017, 181:73-83.
doi: 10.1016/j.compstruct.2017.08.065
URL
|
[13] |
JIN R C, CHEN W, SUDJIANTO A. An efficient algorithm for constructing optimal design of computer experiments[J]. Journal of Statistical Planning and Inference, 2005, 134(1):268-287.
doi: 10.1016/j.jspi.2004.02.014
URL
|
[14] |
QUEIPO N V, HAFTKA R T, WEI S, et al. Surrogate-based analysis and optimization[J]. Progress in Aerospace Sciences, 2005, 41(1):1-28.
doi: 10.1016/j.paerosci.2005.02.001
URL
|
[15] |
KENNEDY J, EBERHART R. Particle swarm optimization [C]//International Conference on Neural Networks (ICNN). Perth, WA, Australia: IEEE, 1995: 1942-1948.
|