[1] |
吴九汇, 马富银, 张思文, 等. 声学超材料在低频减振降噪中的应用评述[J]. 机械工程学报, 2016, 52(13):68-78.
|
|
WU Jiuhui, MA Fuyin, ZHANG Siwen, et al. Application of acoustic metamaterials in low-frequency vibration and noise reduction[J]. Journal of Mecha-nical Engineering, 2016, 52(13):68-78.
|
[2] |
阮居祺, 卢明辉, 陈延峰, 等. 基于弹性力学的超构材料[J]. 中国科学: 技术科学, 2014, 44(12):1261-1270.
|
|
RUAN Juqi, LU Minghui, CHEN Yanfeng, et al. Metamaterial based on elastic mechanics[J]. Science China Technological Sciences, 2014, 44(12):1261-1270.
|
[3] |
田源, 葛浩, 卢明辉, 等. 声学超构材料及其物理效应的研究进展[J]. 物理学报, 2019, 68(19):7-18.
|
|
TIAN Yuan, GE Hao, LU Minghui, et al. Research advances in acoustic metamaterials[J]. Acta Physica Sinica, 2019, 68(19):7-18.
|
[4] |
BARAVELLI E, RUZZENE M. Internally resonat-ing lattices for bandgap generation and low-frequency vibration control[J]. Journal of Sound and Vibration, 2013, 332(25):6562-6579.
doi: 10.1016/j.jsv.2013.08.014
URL
|
[5] |
LIU Z Y, ZHANG X X, MAO Y W, et al. Locally resonant sonic materials[J]. Physica B: Condensed Matter, 2000, 338(1/2/3/4):201-205.
doi: 10.1016/S0921-4526(03)00487-3
URL
|
[6] |
CUMMER S A, CHRISTENSEN J, ALÙ A. Controlling sound with acoustic metamaterials[J]. Nature Reviews Materials, 2016, 1(3):16001.
doi: 10.1038/natrevmats.2016.1
URL
|
[7] |
JAMES R, WOODLEY S M, DYER C M, et al. Sonic bands, bandgaps, and defect states in layered structures—Theory and experiment[J]. The Journal of the Acoustical Society of America, 1995, 97(4):2041-2047.
doi: 10.1121/1.411995
URL
|
[8] |
梁孝东, 缪林昌, 尤佺, 等. 局域共振二维声子晶体的低频带隙特性研究[J]. 人工晶体学报, 2019, 48(7):1225-1232.
|
|
LIANG Xiaodong, MIAO Linchang, YOU Quan, et al. Low-frequency band gap characteristics of locally resonant two-dimensional phononic crystal[J]. Journal of Synthetic Crystals, 2019, 48(7):1225-1232.
|
[9] |
李妍. 光子晶体和声子晶体中由偶然简并所导致的 Dirac 锥形色散关系研究[D]. 广州: 华南理工大学, 2015.
|
|
LI Yan. Research on the Dirac-cone dispersions induced by accidental degeneracy in photonic and phononic crystals[D]. Guangzhou: South China University of Technology, 2015.
|
[10] |
XIAO B, LAI K F, YU Y, et al. Exciting reflectionless unidirectional edge modes in a reciprocal photonic topological insulator medium[J]. Physical Review B, 2016, 94(19):195427.
doi: 10.1103/PhysRevB.94.195427
URL
|
[11] |
范海燕, 夏百战. 三维声学超材料的高阶拓扑态[J]. 科学通报, 2020, 65(15):1411-1419.
|
|
FAN Haiyan, XIA Baizhan. Higher-order topological states in a three-dimensional acoustic metamaterial[J]. Chinese Science Bulletin, 2020, 65(15):1411-1419.
|
[12] |
王一鹤, 张志旺, 程营, 等. 声子晶体中的表面声波赝自旋模式和拓扑保护声传输[J]. 物理学报, 2019, 68(22):264-271.
|
|
WANG Yihe, ZHANG Zhiwang, CHENG Ying, et al. Pseudospin modes of surface acoustic wave and topologically protected sound transmission in phono-nic crystal[J]. Acta Physica Sinica, 2019, 68(22):264-271.
|
[13] |
PENG Y G, QIN C Z, ZHAO D G, et al. Experimental demonstration of anomalous Floquet topological insulator for sound[J]. Nature Communications, 2016, 7:13368.
doi: 10.1038/ncomms13368
URL
|
[14] |
HE C, NI X, GE H, et al. Acoustic topological insulator and robust one-way sound transport[J]. Nature Physics, 2016, 12(12):1124-1129.
doi: 10.1038/nphys3867
URL
|
[15] |
裴东亮, 杨洮, 陈猛, 等. 基于复合蜂窝结构的宽带周期与非周期声拓扑绝缘体[J]. 物理学报, 2020, 69(2):153-161.
|
|
PEI Dongliang, YANG Tao, CHEN Meng, et al. Broadband periodic and aperiodic acoustic topological insulator based on composite honeycomb structure[J]. Acta Physica Sinica, 2020, 69(2):153-161.
|
[16] |
付子义, 王晨旭, 王立国, 等. 基于COMSOL的声子晶体带结构计算新方法[J]. 软件, 2018, 39(12):6-9.
|
|
FU Ziyi, WANG Chenxu, WANG Liguo, et al. A new method for computation of phononic crystals band structure by COMSOL[J]. Computer Engineering & Software, 2018, 39(12):6-9.
|
[17] |
SPADONI A, RUZZENE M, GONELLA S, et al. Phononic properties of hexagonal chiral lattices[J]. Wave Motion, 2009, 46(7):435-450.
doi: 10.1016/j.wavemoti.2009.04.002
URL
|
[18] |
HU L L, LUO Z R, YIN Q Y. Negative Poisson’s ratio effect of re-entrant anti-trichiral honeycombs under large deformation[J]. Thin-Walled Structures, 2019, 141:283-292.
doi: 10.1016/j.tws.2019.04.032
URL
|
[19] |
MOUSANEZHAD D, HAGHPANAH B, GHOSH R, et al. Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: A simple energy-based approach[J]. Theoretical and Applied Mechanics Letters, 2016, 6(2):81-96.
doi: 10.1016/j.taml.2016.02.004
URL
|
[20] |
EBRAHIMI H, MOUSANEZHAD D, NAYEB-HASHEMI H, et al. 3D cellular metamaterials with planar anti-chiral topology[J]. Materials & Design, 2018, 145:226-231.
|
[21] |
XIA B Z, WANG G B, ZHENG S J. Robust edge states of planar phononic crystals beyond high-symmetry points of Brillouin zones[J]. Journal of the Mechanics and Physics of Solids, 2019, 124:471-488.
doi: 10.1016/j.jmps.2018.11.001
URL
|
[22] |
BITTNER S, DIETZ B, MISKI-OGLU M, et al. Observation of a Dirac point in microwave experiments with a photonic crystal modeling graphene[J]. Physical Review B Condensed Matter, 2010, 82(1):1558-1564.
|
[23] |
BITTNER S, DIETZ B, MISKI-OGLU M, et al. Extremal transmission through a microwave photonic crystal and the observation of edge states in a rectangular Dirac billiard[J]. Physical Review B Condensed Matter, 2012, 85(6):652-660.
|
[24] |
DIEM M, KOSCHNY T, SOUKOULIS C M. Transmission in the vicinity of the Dirac point in hexa-gonal photonic crystals[J]. Physica B: Condensed Matter, 2010, 405(14):2990-2995.
doi: 10.1016/j.physb.2010.01.020
URL
|
[25] |
TORRENT D, MAYOU D, SÁNCHEZ-DEHESA J. Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates[J]. Physical Review B Condensed Matter, 2013, 87(11):269-275.
|
[26] |
CHENG X J, JOUVAUD C, NI X, et al. Robust reconfigurable electromagnetic pathways within a photonic topological insulator[J]. Nature Materials, 2016, 15(5):542-548.
doi: 10.1038/nmat4573
URL
|