Journal of Shanghai Jiao Tong University ›› 2021, Vol. 55 ›› Issue (10): 1219-1227.doi: 10.16183/j.cnki.jsjtu.2020.136
Special Issue: 《上海交通大学学报》2021年“交通运输工程”专题; 《上海交通大学学报》2021年12期专题汇总专辑
Previous Articles Next Articles
WANG Yunlong(), JIANG Yunbo, GUAN Guan, XING Jiapeng, YU Guangliang
Received:
2020-05-17
Online:
2021-10-28
Published:
2021-11-01
CLC Number:
WANG Yunlong, JIANG Yunbo, GUAN Guan, XING Jiapeng, YU Guangliang. Design of Three-Dimensional Layout of Ship Engine Room Equipment Based on Knowledge Based Engineering[J]. Journal of Shanghai Jiao Tong University, 2021, 55(10): 1219-1227.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2020.136
Tab.2
Summary of knowledge of cabin equipment layout
名称 | 位置 |
---|---|
主机 | 单主机,中央轴线,大概率位于机舱1/2~2/3处 |
柴油发电机组 | 均位于上层甲板的主机后部,靠近中轴线烟囱部位 |
废气锅炉 | 均位于上层甲板的主机后部并且紧挨主机,对准烟囱口部位 |
燃油锅炉 | 均位于上层甲板的主机和发电机组后部,靠近中轴线烟囱部位 |
灰水泵 | 经常紧挨灰水舱,位于底层机舱甲板,靠近船壳内壁 |
消防泵组 | 一般位于主机前部,放置于底层甲板、海水箱与轴线中间 |
污水泵 | 紧挨生活污水存放舱,位于底层机舱甲板,靠近船壳内壁 |
油渣泵 | 位于主机周围,下层甲板的柴油舱底部船壳边缘,即底层甲板 |
排水泵 | 位于主机周围,紧挨澄清舱,位于底层甲板 |
中央冷却器 | 均位于机舱前部,放置下层甲板,接近货舱风道 |
供油单元 | 均位于机舱前部,远离主机,靠近机舱前壁和船壳外壁 |
燃油冷却机组 | 经常位于主机前部,靠近中轴线,靠近主机 |
主空气瓶 | 经常位于机舱尾部,关于中轴线对称,位于下甲板 |
辅空气瓶 | 经常位于机舱尾部,在主空气瓶周围,贴近舱壁 |
消防压力水柜 | 一般位于主机前部,靠近中轴线,远离主机 |
热井 | 均紧挨锅炉设备,位于机舱尾部舱壁处,位于主机后部 |
造水机 | 经常位于主机前部空地处,远离舱壁 |
滑油泵 | 经常位于主机滑油储藏舱后部,紧挨舱室外壁 |
Tab.4
Summary of physical property knowledge of ship engine room equipment
名称 | a/m | b/m | h/m | m/kg |
---|---|---|---|---|
主机 | 10.2 | 7.8 | 10.650 | 323000 |
柴油发电机组 | 5.6 | 7.92 | 2.700 | 20700 |
废气锅炉 | 6.4 | 2.65 | 3.600 | 49200 |
燃油锅炉 | 1.6 | 1.6 | 5 | 7800 |
灰水泵 | 0.6 | 0.45 | 1 | 40 |
消防泵组,2个 | 0.6 | 0.45 | 1 | 50 |
污水泵 | 0.6 | 0.45 | 1 | 40 |
油渣泵 | 0.6 | 0.45 | 1 | 40 |
排水泵 | 0.6 | 0.45 | 1 | 40 |
中央冷却器 | 0.835 | 1.85 | 2.125 | 100 |
供油单元,2个 | 2.8 | 1.200 | 2 | 150 |
燃油冷却机组 | 2 | 1.200 | 1.750 | 50 |
主空气瓶,2个 | 3.2 | 3.800 | 1.500 | 100 |
辅空气瓶,3个 | 0.4 | 2.400 | 1.700 | 80 |
消防压力水柜 | 1.5 | 1.500 | 2 | 50 |
热井 | 1.35 | 2.500 | 2.240 | 200 |
造水机 | 500 | 1.100 | 1.500 | 180 |
滑油泵 | 1.4 | 0.500 | 0.500 | 40 |
Tab.5
Equipment production listmm
序号 | 设备名称 | If name= | Then | ||
---|---|---|---|---|---|
1 | 主机和传动装置 | Main_engine | x1=d/2 | y1=0 | z1=3650 |
2 | 柴油发电机组 | Generators | x2=0.6x1 | y2=b2/2±100 | z2=11383 |
3 | 废气锅炉 | Exhaust_boilor | x3=11500 | y3=b3/2±100 | z3=11383 |
4 | 燃油锅炉 | Oil_fired_boilor | x4=x2/2 | y4=b4/2±100 | z4=11383 |
5 | 主辅机供油单元 | Booster_unit | x5=d-3000 | y5=3000±w/2 | z5=7700 |
6 | 柴油机冷却机组 | Diesel cooler | x6=x1+a1+3000 | y6=b6/2±100 | z6=7700 |
7 | 热井 | Hot_well | x7=x1-3000 | y7=b7/2±1500 | z7=7700 |
8 | 中央冷却器 | Centeral_cooler | x8=33000-100 | y8=3650+100 | z8=7700 |
9 | 空气瓶组 | Air_reservior | x9=d/3 | y9=0 | z9=7700 |
10 | 辅空气瓶组 | Aux_air_reservior | x10=x9+b9/2+b10/2 | y10=3500 | z10=7700 |
11 | 消防压力水柜 | Fire_hydrophore | x11=d-a11/2-100 | y11=b11/2±100 | z11=7700 |
12 | 造水机 | Water_generator | x12=d-a12/2-3000 | y12=w/2-3000 | z12=7700 |
13 | 消防泵组 | Fire_pump | x13=x1+a1+3000 | y13=±5000/2 | z13=3650 |
14 | 灰水泵 | Grey_pump | x14=22000+100 | y14=3000+100 | z14=3650 |
15 | 污水泵 | Sewage_pump | x15=18000+100 | y15=2500+100 | z15=3650 |
16 | 油渣泵 | Sludge_pump | x16=20000+100 | y16=-2750-100 | z16=3650 |
17 | 排水泵 | Discharge_pump | x17=25000+100 | y17=-4000-100 | z17=3650 |
18 | 滑油泵 | Lubri_pump | x18=36000+100 | y18=5500+100 | z18=7700 |
Tab.6
Virtual area increasing rules of equipmentmm
设备 | a | b | p | q |
---|---|---|---|---|
主机和传动装置 | >8000 | >5000 | a/2 | b/2 |
4001~8000 | 3001~5000 | a/2.5 | b/2.5 | |
≤4000 | ≤3000 | a/3 | b/3 | |
柴油发电机组 | >5000 | >2000 | a/4 | b/2 |
3001~5000 | 1201~2000 | a/3 | b/2.5 | |
≤3000 | ≤1200 | a/2.5 | b/1.25 | |
废气锅炉 | >2000 | >2000 | a/3 | b/3 |
≤2000 | ≤2000 | a/2.5 | b/2.5 | |
泵 | - | - | 300 | 300 |
其他 | >3000 | >3000 | a/3.5 | b/3.5 |
2001~3000 | 2001~3000 | a/3 | b/3 | |
1001~2000 | 1001~2000 | a/2.5 | b/2.5 | |
≤1000 | ≤1000 | a/2 | b/2 |
[1] | 何坤, 沈斌, 彭劼扬, 等. 基于改进遗传算法的航天大型零件车间布局优化[J]. 组合机床与自动化加工技术, 2018(1):158-160. |
HE Kun, SHEN Bin, PENG Jieyang, et al. Layout and optimization of aerospace parts workshop based on the improved genetic algorithm[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2018(1):158-160. | |
[2] | 李俊华, 陈宾康, 应文烨, 等. 退火演化算法在舰艇舱室优化布置设计中的应用[J]. 武汉交通科技大学学报, 2000, 24(4):360-362. |
LI Junhua, CHEN Binkang, YING Wenye, et al. Application of annealing evolution algorithm in optimal layout design for naval vessel compartments[J]. Journal of Wuhan Transportation University, 2000, 24(4):360-362. | |
[3] | 王超, 王冬青, 贾金原. 面向虚实融合的卧室箱体建模与布局算法[J]. 计算机科学与探索, 2018, 12(4):511-524. |
WANG Chao, WANG Dongqing, JIA Jinyuan. Virtual-real fusion oriented algorithm of bedroom cuboid modeling and furniture arrangement[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(4):511-524. | |
[4] | 陈增合, 王永峰, 杨永恒. 基于CATIA知识工程的载货车整车模型的创建[J]. 重型汽车, 2018(4):12-14. |
CHEN Zenghe, WANG Yongfeng, YANG Yong-heng. Creation of vehicle model for truck based on CATIA knowledge engineering[J]. Heavy Truck, 2018(4):12-14. | |
[5] |
WANG Y L, YU Y Y, LI K, et al. A human-computer cooperation improved ant colony optimization for ship pipe route design[J]. Ocean Engineering, 2018, 150:12-20.
doi: 10.1016/j.oceaneng.2017.12.024 URL |
[6] | 王运龙, 王晨, 纪卓尚, 等. 船舶居住舱室智能布局优化设计方法研究[J]. 中国造船, 2013, 54(3):139-146. |
WANG Yunlong, WANG Chen, JI Zhuoshang, et al. A study on intelligent layout design of ship cabin[J]. Shipbuilding of China, 2013, 54(3):139-146. | |
[7] | 邓小龙, 柳存根. 船舶锚泊布置智能设计研究[J]. 船舶工程, 2011, 33(3):72-74. |
DENG Xiaolong, LIU Cungen. Intelligent design of ship mooring arrangement[J]. Ship Engineering, 2011, 33(3):72-74. | |
[8] |
KIM K S, ROH M I. A submarine arrangement design program based on the expert system and the multistage optimization[J]. Advances in Engineering Software, 2016, 98:97-111.
doi: 10.1016/j.advengsoft.2016.04.008 URL |
[9] | 姜文英, 林焰, 陈明, 等. 基于粒子群和蚁群算法的船舶机舱规划方法[J]. 上海交通大学学报, 2014, 48(4):502-507. |
JIANG Wenying, LIN Yan, CHEN Ming, et al. An optimization approach based on particle swarm optimization and ant colony optimization for arrangement of marine engine room[J]. Journal of Shanghai Jiao Tong University, 2014, 48(4):502-507. | |
[10] | 王运龙, 吴张盼, 李楷, 等. 基于禁忌搜索算法的船舶舱室智能布局设计[J]. 华中科技大学学报(自然科学版), 2018, 46(6):49-53. |
WANG Yunlong, WU Zhangpan, LI Kai, et al. Ship cabin intelligent layout design based on tabu search algorithm[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46(6):49-53. | |
[11] |
LI C T, WANG D Y. Multi-objective optimisation of a container ship lashing bridge using knowledge-based engineering[J]. Ships and Offshore Structures, 2019, 14(1):35-52.
doi: 10.1080/17445302.2018.1472520 URL |
[12] |
JUNG S K, ROH M I, KIM K S. Arrangement method of a naval surface ship considering stability, operability, and survivability[J]. Ocean Engineering, 2018, 152:316-333.
doi: 10.1016/j.oceaneng.2018.01.058 URL |
[13] | 崔进举, 王德禹, 夏利娟, 等. 基于知识工程的船舶舯剖面结构设计及优化[J]. 上海交通大学学报, 2012, 46(3):368-373. |
CUI Jinju, WANG Deyu, XIA Lijuan, et al. Mid-ship section structural design and optimization based on knowledge based engineering[J]. Journal of Shanghai Jiao Tong University, 2012, 46(3):368-373. | |
[14] | 中国船级社. 钢质海船入级规范2018综合文本[M]. 北京: 人民交通出版社, 2018. |
China Classification Society. 2018 Comprehensive text of standard for classification of steel ships[M]. Beijing: People’s Communications Press, 2018. |
[1] | MA Zhoujun, WANG Yong, WANG Jie, CHEN Shaoyu. A Dual Cooperative Optimization for Optimal Redundancy Quantity of MMC Submodules of Flexible Controller [J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 325-332. |
[2] | YANG Bo, WANG Junting, YU Lei, CAO Pulin, SHU Hongchun, YU Tao. Peafowl Optimization Algorithm Based Bi-Level Multi-Objective Optimal Allocation of Energy Storage Systems in Distribution Network [J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1294-1307. |
[3] | LI Lingfang, CHEN Zhanpeng, HU Yan, TAI Nengling, GAO Mengping, ZHU Tao. Expansion Planning of Renewable Energy Power System Considering Flexibility and Economy [J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 791-801. |
[4] | SUN Hongqiang, ZHANG Zhanyue, FANG Yuqiang. Formation Satellite Reconstruction Strategy Based on NSGA-II Algorithm [J]. Journal of Shanghai Jiao Tong University, 2021, 55(3): 320-330. |
[5] | LIU Xi, LI Xian, CHEN Wei, CONG Guangtao, LI Rufei. Research on Multi-objective Assignment Method Based on NSGA-III Algorithm [J]. Air & Space Defense, 2021, 4(1): 109-116. |
[6] | DENG Zhaoxue, YANG Qinghua, CAI Qiang, LIU Tianqin. Design and Test of a Magneto-Rheological Mount Applied to Start/Stop Mode of Vehicle Powertrains [J]. Journal of Shanghai Jiao Tong University, 2021, 55(1): 56-66. |
[7] | SUN Xilong, WANG Dengfeng, LI Ruheng, ZHANG Bin . Multi-Objective Optimization for Structure Crashworthiness Based on Kriging Surrogate Model and Simulated Annealing Algorithm [J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 727-738. |
[8] | ZHENG Yuqiao, ZHANG Lu, PAN Yongxiang, HE Zhe . Multi-Objective Structural Optimization of a Wind Turbine Tower [J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(4): 538-544. |
[9] | GAO Yunkai, MA Chao, LIU Zhe, TIAN Linli. Discrete Topology Optimization of Body-in-White Welding Production Platform Based on NSGA-III [J]. Journal of Shanghai Jiao Tong University, 2020, 54(12): 1324-1334. |
[10] | LAN Hongkai,LIU Cungen,NIE Xin. Multi-Objective Optimization Model for Expansion Method of Three-Dimensional Curved Hull Plate [J]. Journal of Shanghai Jiaotong University, 2020, 54(10): 1101-1107. |
[11] | SHI Zhenxing, GUAN Zaisheng, WANG Lei, SHI Chengang, WU Bin. Research on Multi-objective Optimization of Autopilot Parameters Based on Genetic Algorithm [J]. Air & Space Defense, 2020, 3(1): 41-49. |
[12] | WANG Gangcheng,MA Ning,GU Xiechong. Fast Collaborative Multi-Objective Optimization for Hydrodynamic Based on Kriging Surrogate Model [J]. Journal of Shanghai Jiaotong University, 2018, 52(6): 666-673. |
[13] | Lü Yi (吕燚), ZHANG Yun (章云). Reliability Modeling and Maintenance Policy Optimization for Deteriorating System Under Random Shock [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(6): 791-797. |
[14] | LIU Kai (刘凯), WU Yang (吴阳), GE Zhishang (葛志尚), WANG Yangwei (王扬威), XU Jiaqi (许嘉琪), LU Yonghua (陆永华), ZHAO Dongbiao (赵东标). Adaptive Multi-Objective Optimization of Bionic Shoulder Joint Based on Particle Swarm Optimization [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(4): 550-. |
[15] | Wei Xiaona, Xu Haibin, Chen Jinqiang, Dong Yunfeng. A Collaborative Optimization Method by Introducing Subsystem Optimization and Its Application [J]. Air & Space Defense, 2018, 1(2): 1-6. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||