[1] |
MEHROTRA K G, MOHAN C K, HUANG H M. Anomaly detection principles and algorithms[M]. Switzerland: Springer International Publishing, 2017.
|
[2] |
TIMČENKO V, GAJIN S. Ensemble classifiers for supervised anomaly based network intrusion detection [C]//2017 13th IEEE International Conference on Intelligent Computer Communication and Processing (ICCP). Piscataway, NJ, USA: IEEE, 2017: 13-19.
|
[3] |
HUSSAIN B, DU Q H, REN P Y. Semi-supervised learning based big data-driven anomaly detection in mobile wireless networks[J]. China Communications, 2018, 15(4):41-57.
|
[4] |
MILLER D J, KESIDIS G, QIU Z C. Unsupervised parsimonious cluster-based anomaly detection (PCAD) [C]//2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP). Piscataway, NJ, USA: IEEE, 2018: 1-6.
|
[5] |
CHANDOLA V, BANERJEE A, KUMAR V. Anomaly detection[J]. ACM Computing Surveys, 2009, 41(3):1-58.
|
[6] |
TAO X T, LI G Q, SUN D, et al. A game-theoretic model and analysis of data exchange protocols for Internet of Things in clouds[J]. Future Generation Computer Systems, 2017, 76:582-589.
doi: 10.1016/j.future.2016.12.030
URL
|
[7] |
EDGEWORTH F Y. On discordant observations[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1887, 23(143):364-375.
doi: 10.1080/14786448708628471
URL
|
[8] |
KNORR E M, NG R T, TUCAKOV V. Distance-based outliers: Algorithms and applications[J]. The VLDB Journal, 2000, 8(3/4):237-253.
doi: 10.1007/s007780050006
URL
|
[9] |
LEE J G, HAN J W, LI X L. Trajectory outlier detection: A partition-and-detect framework [C]//2008 IEEE 24th International Conference on Data Engineering. Piscataway, NJ, USA: IEEE, 2008: 140-149.
|
[10] |
LUAN F J, ZHANG Y T, CAO K Y, et al. Based local density trajectory outlier detection with partition-and-detect framework [C]//2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). Piscataway, NJ, USA: IEEE, 2017: 1708-1714.
|
[11] |
DJENOURI Y, BELHADI A, LIN J C, et al. Adapted K-nearest neighbors for detecting anomalies on spatio-temporal traffic flow[J]. IEEE Access, 2019, 7:10015-10027.
doi: 10.1109/Access.6287639
URL
|
[12] |
毛江云, 吴昊, 孙未未. 路网空间下基于马尔可夫决策过程的异常车辆轨迹检测算法[J]. 计算机学报, 2018, 41(8):1928-1942.
|
|
MAO Jiangyun, WU Hao, SUN Weiwei. Vehicle trajectory anomaly detection in road network via Markov decision process[J]. Chinese Journal of Computers, 2018, 41(8):1928-1942.
|
[13] |
WANG R Y, SUN D, LI G Q, et al. Statistical detection of collective data Fraud [C]//International Conference on Multimedia and Expo. London, UK: IEEE, 2020.
|
[14] |
KULLBACK S, LEIBLER R A. On information and sufficiency[J]. Annals of Mathematical Statistics, 1951, 22(1):79-86.
doi: 10.1214/aoms/1177729694
URL
|
[15] |
SALEM O, NAÏT-ABDESSELAM F, MEHAOUA A. Anomaly detection in network traffic using Jensen-Shannon divergence [C]//2012 IEEE International Conference on Communications (ICC). Piscataway, NJ, USA: IEEE, 2012: 5200-5204.
|
[16] |
COVER T, HART P. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967, 13(1):21-27.
doi: 10.1109/TIT.1967.1053964
URL
|
[17] |
WOHLKINGER W, ALDOMA A, RUSU R B, et al. 3DNet: Large-scale object class recognition from CAD models [C]//2012 IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2012: 5384-5391.
|
[18] |
AGGARWAL C C. Proximity-based outlier detection[M]// Outlier Analysis. Switzerland: Springer International Publishing, 2016: 111-147.
|
[19] |
陈瑜. 离群点检测算法研究[D]. 兰州: 兰州大学, 2018.
|
|
CHEN Yu. Research on the outliers detection algorithm[D]. Lanzhou: Lanzhou University, 2018.
|