Journal of Shanghai Jiaotong University ›› 2018, Vol. 52 ›› Issue (10): 1298-1306.doi: 10.16183/j.cnki.jsjtu.2018.10.019
Previous Articles Next Articles
YI Ping,WANG Kedi,HUANG Cheng,GU Shuangchi,ZOU Futai,LI Jianhua
CLC Number:
YI Ping,WANG Kedi,HUANG Cheng,GU Shuangchi,ZOU Futai,LI Jianhua. Adversarial Attacks in Artificial Intelligence: A Survey[J]. Journal of Shanghai Jiaotong University, 2018, 52(10): 1298-1306.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2018.10.019
[1]LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. [2]GOODFELLOW I, YOSHUA B, AARON C. Deep learning[M]. Boston: MIT Press, 2016. [3]WANG Xinggang, YANG Wei, JEFFREY W, et al. Searching for prostate cancer by fully automated magnetic resonance imaging classification: Deep learning versus non-deep learning[J]. Scientific Reports, 2017, 7(1): 15415. [4]XIONG H Y, ALIPANAHI B. The human splicing code reveals new insights into the genetic determinants of disease[J]. Science, 2015, 347 (6218): 144-153. [5]WEBB S. Deep learning for biology[J]. Nature, 2018, 554(2): 555-557. [6]BRANSON K. A deep (learning) dive into a cell[J]. Nature Methods, 2018, 15(4): 253-254. [7]DENG Yue, BAO Feng, KONG Youyong, et al. Deep direct reinforcement learning for financial signal representation and trading[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(3): 653-664. [8]HE Ying, ZHAO Nan, YIN Hongxi. Integrated networking, caching, and computing for connected vehicles: A deep reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2018, 67(1): 44-55. [9]ZHAO Dongbin, CHEN Yaran, LV Le. Deep reinforcement learning with visual attention for vehicle classification[J]. IEEE Transactions on Cognitive and Developmental Systems, 2017,9(4): 356-367. [10]AKHTAR N, MIAN A. Threat of adversarial attacks on deep learning in computer vision: a survey[J]. IEEE Access, 2018, 6(2): 14410-14430. [11]GOODFELLOW I, SHLENS J, CHRISTIAN S. Explaining and harnessing adversarial examples[EB/OL]. (2015-03-20)[2018-06-23]. https://arxiv.org/abs/1412.6572. [12]GUO Chuan, RANA M, CISSE M, et al. Countering adversarial images using input transformations [EB/OL]. (2018-01-25)[2018-06-23]. https://arxiv.org/abs/1711.00117. [13]SINHA A, NAMKOONG H, DUCHI J. Certifying some distributional robustness with principled adversarial training [EB/OL]. (2018-05-01)[2018-06-23]. https://arxiv.org/abs/1710.10571. [14]SONG Yang, KIM T, NOWOZIN S, et al. Pixel defend: Leveraging generative models to understand and defend against adversarial examples [EB/OL]. (2018-05-01)[2018-06-23]. https://arxiv.org/abs/1710.10766. [15]XIE Cihang, WANG Jianyu, ZHANG Zhishuai, et al. Mitigating adversarial effects through randomization [EB/OL]. (2018-02-28)[2018-06-23]. https://arxiv.org/abs/1711.01991. [16]MCDANIEL P, PAPERNOT N, CELIK Z B. Machine learning in adversarial settings[J]. IEEE Security & Privacy, 2016, 14(3): 68-72. [17]PAPERNOT N, MCDANIEL P, JHA S, et al. The limitations of deep learning in adversarial settings[C]//IEEE European Symposium on Security and Privacy (EuroS&P). Saarbrucken, Germany: IEEE, 2016: 372-387. [18]KURAKIN A, GOODFELLOW I, BENGIO S. Adversarial examples in the physical world[EB/OL]. (2018-05-28) [2018-06-23]. https://arxiv.org/abs/1805.10997. [19]TRAMER F, GOODFELLOW I, BONEH D, et al. Ensemble adversarial training: attacks and defenses [EB/OL]. (2017-05-19)[2018-06-23]. https://arxiv.org/abs/1705.07204. [20]MOOSAVIDEZFOOLI S, FAWZI A, FROSSARD P. DeepFool: A simple and accurate method to fool deep neural networks[EB/OL]. (2015-11-14)[2018-06-23]. https://arxiv.org/abs/1511.04599. [21]BRENDEL W, RAUBER J, BETHGE M. Decision-based adversarial attacks: Reliable attacks against blackbox machine learning models[EB/OL]. (2017-12-12)[2018-06-23]. https://arxiv.org/abs/1712.04248. [22]CISSE M, ADI Y, NEVEROVA N, et al. Houdini: Fooling deep structured prediction models [EB/OL]. (2017-07-17) [2018-06-23]. https://arxiv.org/abs/1707.05373. [23]HE W, LI Bo, SONG D. Decision boundary analysis of adversarial examples[EB/OL]. (2018-02-16)[2018-06-23]. https://openreview.net/forum?id=BkpiPMbA-. [24]ZHAO Zhengli, DUA D, SINGH S. Generating natural adversarial examples[EB/OL]. (2017-10-31)[2018-06-23]. https://arxiv.org/abs/1710.11342. [25]XIAO Chaowei, ZHU Junyan, LI Bo, et al. Spatially transformed adversarial examples[EB/OL]. (2018-01-08) [2018-06-23]. https://arxiv.org/abs/1801.02612. [26]CARLINI N, WAGNER D. Towards evaluating the robustness of neural networks[EB/OL]. (2016-08-16) [2018-06-23]. https://arxiv.org/abs/1608.04644. [27]PAPERNOT N, MCDANIEL P, GOODFELLOW I, et al. Practical black-box attacks against machine learning[EB/OL]. (2016-02-08)[2018-06-23]. https://arxiv.org/abs/1602.02697. [28]PAPERNOT N, GOODFELLOW I, SHEATSLEY R, et al. Cleverhans v1. 0.0: An adversarial machine learning library[EB/OL]. (2016-10-03)[2018-06-23]. https://arxiv.org/abs/1610.00768. [29]TANAY T, GRIFFIN L. A boundary tilting persepective on the phenomenon of adversarial examples[EB/OL]. (2016-08-27)[2018-06-23]. https://arxiv.org/abs/1608.07690. [30]FAWZI A, FAWZI O, FROSSARD P. Fundamental limits on adversarial robustness[EB/OL]. (2015-04-27)[2018-06-23]. http://www.alhusseinfawzi.info/papers/workshop_dl.pdf. [31]TABACOF P, VALLE E. Exploring the space of adversarial images[C]//IEEE International Joint Conference on Neural Networks (IJCNN). Vancouver, BC, Canada: IEEE, 2016: 2161-4407. [32]LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551. [33]DENG J, DONG W, SOCHER R, et al. Imagenet: A large-scale hierarchical image database[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Miami, USA: IEEE, 2009: 248-255. [34]TRAMER F, PAPERNOT N, GOODFELLOW I, et al. The space of transferable adversarial examples[EB/OL]. (2017-04-11)[2018-06-23]. https://arxiv.org/abs/1704.03453. [35]KROTOV D, HOPFIELD J J. Dense associative memory is robust to adversarial inputs[EB/OL]. (2016-08-27)[2018-06-23]. https://arxiv.org/abs/1701.00939. [36]MOOSAVI-DEZFOOLI S M, FAWZI A, FAWZI O, et al. Universal adversarial perturbations[EB/OL]. (2016-10-26)[2018-06-23]. https://arxiv.org/abs/1610.08401. [37]DZIUGAITE G K, GHAHRAMANI Z, ROY D M. A study of the effect of JPG compression on adversarial images[EB/OL]. (2016-08-02)[2018-06-23]. https://arxiv.org/abs/1608.00853. [38]DAS N, SHANBHOGUE M, CHEN S, et al. Keeping the bad guys out: protecting and vaccinating deep learning with JPEG compression[EB/OL]. (2017-05-08)[2018-06-23]. https://arxiv.org/abs/1705.02900. [39]SHIN R, SONG D. JPEG-resistant adversarial images[EB/OL]. (2017-08-14)[2018-06-23]. https://machine-learning-and-security.github.io/papers/mlsec17_paper_54.pdf. [40]AKHTAR N, LIU Jian, MIAN A. Defense against universal adversarial perturbations[EB/OL]. (2017-11-16)[2018-06-23]. https://arxiv.org/abs/1711.05929. [41]XIE Cihang, WANG Jianyu, ZHANG Zhishuai, et al. Adversarial examples for semantic segmentation and object detection[EB/OL]. (2017-05-24)[2018-06-23]. https://arxiv.org/abs/1703.08603. [42]WANG Qinglong, GUO Wenbo, ZHANG Kaixuan, et al. Learning adversary-resistant deep neural networks[EB/OL]. (2016-12-05)[2018-06-23]. https://arxiv.org/abs/1612.01401. [43]GU Shixiang, RIGAZIO L. Towards deep neural network architectures robust to adversarial examples[EB/OL]. (2014-12-11)[2018-06-23]. https://arxiv.org/abs/1412.5068. [44]RIFAI S, VINCENT P, MULLER X, et al. Contractive auto-encoders: Explicit invariance during feature extraction[C]//ICML’11 Proceedings of the 28th International Conference on International Conference on Machine Learning. Washington, USA: Omnipress, 2011: 833-840. [45]ROSS A, DOSHIVELEZ F. Improving the adversarial robustness and interpretability of deep neural networks by regularizing their input gradients[EB/OL]. (2017-11-26)[2018-06-23]. https://arxiv.org/abs/1711.09404. [46]PAPERNOT N, MCDANIEL P, WU Xi, et al. Distillation as a defense to adversarial perturbations against deep neural networks[C]//IEEE Symposium on Security and Privacy (SP). San Jose, CA, USA: IEEE, 2016: 2375-1207. [47]GAO Ji, WANG Beilun, LIU Zeming, et al. Masking deep neural network models for robustness against adversarial samples[EB/OL]. (2017-02-22)[2018-06-23]. https://arxiv.org/abs/1702.06763. [48]LEE H, HAN S, LEE J. Generative adversarial trainer: defense to adversarial perturbations with GAN[EB/OL]. (2017-05-09)[2018-06-23]. https://arxiv.org/abs/1705.03387. [49]MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning models resistant to adversarial attacks[EB/OL]. (2017-06-19)[2018-06-23]. https://arxiv.org/abs/1706.06083. [50]MA Xingjun, LI Bo, WANG Yisen, et al. Characterizing adversarial subspaces using local intrinsic dimensionality[EB/OL]. (2018-01-08)[2018-06-23]. https://arxiv.org/abs/1801.02613. [51]SAM P, KABKAB M, CHELLAPPA R. Defense-GAN: Protecting classifiers against adversarial attacks using generative models[EB/OL]. (2018-05-17)[2018-06-23]. https://arxiv.org/abs/1805.06605. [52]RAGHUNATHAN A, STEINHARDT J, LIANG P. Certified defenses against adversarial examples[EB/OL]. (2018-01-29)[2018-06-23]. https://arxiv.org/abs/1801.09344. [53]BUCKMAN J, ROY A, GOODFELLOW I, et al. Thermometer encoding: One hot way to resist adversarial examples[EB/OL]. (2018-02-16)[2018-06-23]. https://openreview.net/forum?id=S18Su--CW. [54]WENG Xuwei, ZAHNG Huan, CHEN Pinyu, et al. Evaluating the robustness of neural networks: An extreme value theory approach[EB/OL]. (2018-01-31)[2018-06-23]. https://arxiv.org/abs/1801.10578. [55]ELSAYED G F, PAPERNOT N, GOODFELLOW I, et al. Adversarial examples that fool both human and computer Vision[EB/OL]. (2018-02-22)[2018-06-23]. https://arxiv.org/abs/1802.08195. |
[1] | ZENG Guozhi, WEI Ziqing, YUE Bao, DING Yunxiao, ZHENG Chunyuan, ZHAI Xiaoqiang. Energy Consumption Prediction of Office Buildings Based on CNN-RNN Combined Model [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1256-1261. |
[2] | WU Shuchen, QI Zongfeng, LI Jianxun. Intelligent Global Sensitivity Analysis Based on Deep Learning [J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 840-849. |
[3] | LÜ Chaofan, YAN Yingjie, LIN Li, CHAI Gang, BAO Jinsong. Design of Mandibular Angle Osteotomy Plane Based on Point Cloud Semantic Segmentation Algorithm [J]. Journal of Shanghai Jiao Tong University, 2022, 56(11): 1509-1517. |
[4] | TAO Haihong, YAN Yingfei. A Netted Radar Node Selection Algorithm Based on GA-CNN [J]. Air & Space Defense, 2022, 5(1): 1-5. |
[5] | JIN Lijie, WU Yatao. Radar Signal Modulation Type Recognition Based on Double CNN [J]. Air & Space Defense, 2022, 5(1): 66-70. |
[6] | WANG Zhiming(王志明), DONG Jingjing (董静静), ZHANG Junpeng∗ (张军鹏). Multi-Model Ensemble Deep Learning Method to Diagnose COVID-19 Using Chest Computed Tomography Images [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 70-80. |
[7] | ZHANG Yue (张月), LIU Shijie (刘世界), LI Chunlai (李春来), WANG Jianyu (王建宇). Application of Deep Learning Method on Ischemic Stroke Lesion Segmentation [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 99-111. |
[8] | XIA Ming (夏明), XU Tianyi (徐天意), JIANG Hong∗ (姜虹). Progress and Perspective of Artificial Intelligence and Machine Learning of Prediction in Anesthesiology [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 112-120. |
[9] | HE Qingbo,JIANG Tianxi. Can AI Be Realized by Manipulating Waves? [J]. Journal of Shanghai Jiao Tong University, 2021, 55(Sup.1): 1-2. |
[10] | LI Shaoyuan, YIN Xiang. Do Agent Self-Game and Learning Have Limitation of Performance? [J]. Journal of Shanghai Jiao Tong University, 2021, 55(Sup.1): 3-4. |
[11] | WANG Xingzhi, ZHAI Haibao, YAN Yaqin, WU Qingxi. Pre-Dispatching Method of New Generation Dispatching and Control System Based on Digital Twin and Deep Learning [J]. Journal of Shanghai Jiao Tong University, 2021, 55(S2): 37-41. |
[12] | WANG Yan, CHEN Yaoran, HAN Zhaolong, ZHOU Dai, BAO Yan. Short-Term Wind Speed Forecasting Model Based on Mutual Information and Recursive Neural Network [J]. Journal of Shanghai Jiao Tong University, 2021, 55(9): 1080-1086. |
[13] | ZOU Yue (邹 悦), LI Lin (李 霖), YANG Xubo (杨旭波). Lightweight Method for Vehicle Re-identification Using Reranking Algorithm Based on Topology Information of Surveillance Network [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 577-586. |
[14] | LI Lin (李 霖), HU Zeyu(胡泽宇), YANG Xubo (杨旭波). Intelligent Analysis of Abnormal Vehicle Behavior Based on a Digital Twin [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 587-597. |
[15] | LI Guanyu (李冠玉), ZHANG Fengqin (张凤芹), LIU Qiegen (刘且根) . Distribution-Transformed Network for Impulse Noise Removal [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 543-553. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||