《上海交通大学学报》2021年“水利工程”专题
采用基于滑动Kriging插值的无单元伽辽金比例边界法(EFG-SBM)求解侧边界有温度载荷的稳态热传导问题,该方法通过无单元伽辽金法(EFG)和滑动Kriging插值离散环向边界.由于滑动Kriging插值形函数具备Kronecker delta函数插值特性,克服了移动最小二乘逼近难以直接准确施加本质边界条件的不足.作为一种新型的边界型无网格法,EFG-SBM兼有EFG法和比例边界有限元法(SBFEM)的优点.该方法继承了SBFEM的半解析特性,通过引入比例边界坐标系,可将偏微分控制方程环向离散,径向上解析求解.与传统的SBFEM相比,环向边界通过节点进行离散,前处理和后处理简便.通过数值算例可以看出,相比基于拉格朗日多项式的SBFEM,基于滑动Kriging插值的EFG-SBM计算精度更高.相比有限元法(FEM),该方法能更好地反映尖角处热奇异性以及无限域温度分布状态.
底枢轴承作为重要水利结构的支撑与转动构件,其在转合操作中造成的磨损直接影响闸门的正常运作和可靠性.在恶劣的深水工作条件下,为了更好地监测轴承磨损量,利用微机电系统,设计一种新型的薄膜电阻型磨损量传感器;进行磨损量测量表征实验,并利用计算机仿真建模进行磨损量实验模拟;具体分析不同工况下的测量电阻与磨损参数之间的关系.结果表明:该传感器的制作和安装过程具有一定的可行性;实验与仿真结果基本吻合;在工况允许范围内,电阻越大,磨损量的测量精度越高.该传感器有望应用于大藤峡人字闸门底轴枢纽的智能监控,实现21世纪水利枢纽工程的物联网与智慧管理.
开展一系列开闸式斜坡异重流水槽实验,分析线性层结和均匀水体中斜坡异重流遭遇刚性植被群的发展和演变特性.采用彩色数码相机记录异重流发展过程,并利用粒子图像测速技术(PIV)获取局部流场结构.结果表明:对于有植被工况,异重流的头部速度可分为加速、减速、二次加速及二次减速4个阶段.各阶段之间的转变位置随层结度增大而前移,但受植被密度影响不明显.在层结环境中,受植被群影响,异重流会出现“首次分离-前进-二次分离”现象.植被群削弱异重流涡度场的发展,随植被密度增大,该差异愈加显著.层结水体和植被群均会抑制异重流涡度场的发展,其中层结水体的抑制作用更强.
考虑实际海域普遍存在的波流相互作用现象,研究均匀流对不规则波的波浪特性和不确定度的影响规律.首先,在上海交通大学循环水槽中开展不规则波与均匀流相互作用试验并测量波面升高时历数据;然后,基于雷诺平均Navier-Stokes(RANS)方程对波流相互作用问题进行数值模拟;最后,将不规则波的有义波高和平均周期作为研究对象,开展包括网格收敛性和时间步长收敛性在内的不确定度分析.研究结果表明:顺流及无流时波高概率分布符合Rayleigh分布;不规则波能量谱峰值在顺流作用下向低频移动;不规则波有义波高对网格尺寸更加敏感,平均周期则更依赖于时间步长;均匀顺流能降低有义波高对时间步长的依赖程度,但对平均周期的影响则相反.
为了研究倾斜放置的圆柱体垂直入水过程流体动力特性,针对低弗劳德数条件下的圆柱体入水开展实验研究.采用高速摄像技术记录圆柱体入水过程空泡演化以及圆柱体的位置.基于数字图像处理技术,提取圆柱体入水过程的运动轨迹以及倾角变化.对数据进行五阶光滑样条拟合处理,获得圆柱体的速度和加速度,进而开展圆柱体的运动特性和动力特性研究.研究结果表明:倾斜放置圆柱体垂直入水过程形成空泡分离、双空泡等独有的流动现象.圆柱体砰击自由液面后加速度快速增加,并在空泡分离后达到最大值,随后迅速减小并逐渐趋向于0.倾角越大的圆柱体入水后竖直速度衰减越快,而水平速度则快速增加.然而不同初始倾角圆柱体的轨迹均呈现先向迎流方向运动后向背流方向运动的特征.圆柱体的角加速度对水动力的响应非常快,整体呈现先增加后减小的变化特性.初始倾角越大的圆柱体入水后角速度增加越快且达到的最大值也越大,其倾角增加也越快.圆柱体的阻力系数和升力系数在入水后快速增加,而在空泡闭合后增加缓慢,且初始倾角大的圆柱体入水后力系数增加较快.
在自然环境和水利工程中,异重流现象广泛存在.现实工况中,大多数底床覆盖砾石及不同粒径大小的泥沙颗粒,可视为粗糙底床,因此研究异重流流过粗糙底床的动力学特性具有实际科学意义及工程应用价值.本文利用持续入流式异重流水槽试验,综合考虑底床粗糙度和异重流初始质量分数,分析异重流头部位置、头部速度、掺混系数等扩散特性,不同断面的湍流强度及雷诺应力等湍流特性,结合雷诺应力法和湍动能法计算底床剪应力.结果表明: 异重流头部速度与底床粗糙度呈负相关,与初始质量分数呈正相关;在高粗糙度、高初始质量分数工况时,底床粗糙度是控制其运动特性的主要因素;当粗糙度增加到一定程度时,异重流纵向时均流速剖面(沿水深分布)的峰值点出现“爬升现象”;湍流强度剖面(沿水深分布)出现一个极小值及两个极大值,其中纵向湍流强度是异重流湍流结构的主导,粗糙底床上的垂向湍流强度相比于光滑底床增加幅度明显;靠近底床附近,雷诺切应力为正值,远离底床区域,雷诺切应力为负值;利用湍动能法计算的底床剪应力均小于同粗糙度下的雷诺应力法;在总体理查森数相同情况下,异重流掺混系数与底床粗糙度呈正相关.最后总结出粗糙底床对异重流的主要影响为:摩阻力增加、掺混作用强化、近底床区域密度重分布、湍流边界层变厚及纵向时均流速剖面峰值点“爬升现象”的出现.