上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (11): 1483-1492.doi: 10.16183/j.cnki.jsjtu.2020.215
所属专题: 《上海交通大学学报》2021年12期专题汇总专辑; 《上海交通大学学报》2021年“水利工程”专题
王峰1,2, 陈佳莉1,2, 陈灯红3(), 范勇1,2, 李志远4, 何卫平1,2
收稿日期:
2020-07-08
出版日期:
2021-11-28
发布日期:
2021-12-03
通讯作者:
陈灯红
E-mail:d.chen@ctgu.edu.cn
作者简介:
王 峰(1987-),男,山东省莱阳市人,副教授,从事无网格法及比例边界有限元法研究.
基金资助:
WANG Feng1,2, CHEN Jiali1,2, CHEN Denghong3(), FAN Yong1,2, LI Zhiyuan4, HE Weiping1,2
Received:
2020-07-08
Online:
2021-11-28
Published:
2021-12-03
Contact:
CHEN Denghong
E-mail:d.chen@ctgu.edu.cn
摘要:
采用基于滑动Kriging插值的无单元伽辽金比例边界法(EFG-SBM)求解侧边界有温度载荷的稳态热传导问题,该方法通过无单元伽辽金法(EFG)和滑动Kriging插值离散环向边界.由于滑动Kriging插值形函数具备Kronecker delta函数插值特性,克服了移动最小二乘逼近难以直接准确施加本质边界条件的不足.作为一种新型的边界型无网格法,EFG-SBM兼有EFG法和比例边界有限元法(SBFEM)的优点.该方法继承了SBFEM的半解析特性,通过引入比例边界坐标系,可将偏微分控制方程环向离散,径向上解析求解.与传统的SBFEM相比,环向边界通过节点进行离散,前处理和后处理简便.通过数值算例可以看出,相比基于拉格朗日多项式的SBFEM,基于滑动Kriging插值的EFG-SBM计算精度更高.相比有限元法(FEM),该方法能更好地反映尖角处热奇异性以及无限域温度分布状态.
中图分类号:
王峰, 陈佳莉, 陈灯红, 范勇, 李志远, 何卫平. 基于滑动Kriging插值的EFG-SBM求解含侧边界的稳态热传导问题[J]. 上海交通大学学报, 2021, 55(11): 1483-1492.
WANG Feng, CHEN Jiali, CHEN Denghong, FAN Yong, LI Zhiyuan, HE Weiping. Element-Free Galerkin Scaled Boundary Method Based on Moving Kriging Interpolation for Steady Heat Conduction Analysis with Temperatures on Side-Faces[J]. Journal of Shanghai Jiao Tong University, 2021, 55(11): 1483-1492.
[1] | 杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2006. |
YANG Shiming, TAO Wenquan. Heat transfer[M]. Beijing: Higher Education Press, 2006. | |
[2] |
RAITHBY G D, CHUI E H. A finite-volume method for predicting a radiant heat transfer in enclosures with participating media[J]. Journal of Heat Transfer, 1990, 112(2):415-423.
doi: 10.1115/1.2910394 URL |
[3] |
KANJANAKIJKASEM W. A finite element method for prediction of unknown boundary conditions in two-dimensional steady-state heat conduction problems[J]. International Journal of Heat and Mass Transfer, 2015, 88:891-901.
doi: 10.1016/j.ijheatmasstransfer.2015.05.019 URL |
[4] | 徐刚, 陈静, 王树齐, 等. 无奇异边界元法精度分析[J]. 上海交通大学学报, 2018, 52(7):867-872. |
XU Gang, CHEN Jing, WANG Shuqi, et al. The numerical accuracy of the desingularized boundary integral equation method[J]. Journal of Shanghai Jiao Tong University, 2018, 52(7):867-872. | |
[5] | 秦红星, 杨杰. 基于无网格局部彼得罗夫伽辽金方法的点采样曲面滤波[J]. 上海交通大学学报, 2012, 46(4):584-590. |
QIN Hongxing, YANG Jie. Point-based surface filtering based on meshless local Petrov-Galerkin method[J]. Journal of Shanghai Jiao Tong University, 2012, 46(4):584-590. | |
[6] | 王峰, 郑保敬, 林皋, 等. 热弹性动力学耦合问题的插值型移动最小二乘无网格法研究[J]. 工程力学, 2019, 36(4):37-43. |
WANG Feng, ZHENG Baojing, LIN Gao, et al. Meshless method based on interpolating moving least square shape functions for dynamic coupled thermoelasticity analysis[J]. Engineering Mechanics, 2019, 36(4):37-43. | |
[7] | CHEN W H, TING K. Finite element analysis of transient thermoelastic fracture problems[J]. Computational Mechanics, 1986, 86:1063-1069. |
[8] |
DE HAN H, HUANG Z Y. Exact and approximating boundary conditions for the parabolic problems on unbounded domains[J]. Computers & Mathematics With Applications, 2002, 44(5/6):655-666.
doi: 10.1016/S0898-1221(02)00180-3 URL |
[9] | SONG C M, WOLF J P. The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics[J]. Computer Methods in Applied Mechanics and Engineering, 1997, 147(3/4):329-355. |
[10] | 徐斌, 徐满清, 王建华. 饱和土体固结3D比例边界有限元法分析[J]. 上海交通大学学报, 2016, 50(1):8-16. |
XU Bin, XU Manqing, WANG Jianhua. Modelling of saturated soil dynamic coupled consolidation problems using three-dimensional scaled boundary finite element method[J]. Journal of Shanghai Jiao Tong University, 2016, 50(1):8-16. | |
[11] |
BIRK C, SONG C. A continued-fraction approach for transient diffusion in unbounded medium[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(33/34/35/36):2576-2590.
doi: 10.1016/j.cma.2009.03.002 URL |
[12] |
VU T H, DEEKS A J. Use of higher-order shape functions in the scaled boundary finite element method[J]. International Journal for Numerical Methods in Engineering, 2006, 65(10):1714-1733.
doi: 10.1002/(ISSN)1097-0207 URL |
[13] | 庞林, 林皋, 钟红. 比例边界等几何方法在断裂力学中的应用[J]. 工程力学, 2016, 33(7):7-14. |
PANG Lin, LIN Gao, ZHONG Hong. Scaled boundary isogeomtric analys applied to fracture mechanics problem[J]. Engineering Mechanics, 2016, 33(7):7-14. | |
[14] | LIU G R, GU Y T. An introduction to meshfree methods and their programming[M]. Berlin/Heidelberg: Springer-Verlag, 2005. |
[15] | 马文涛, 许艳, 马海龙. 修正的内部基扩充无网格法求解多裂纹应力强度因子[J]. 工程力学, 2015, 32(10):18-24. |
MA Wentao, XU Yan, MA Hailong. Solving stress intensity factors of multiple cracks by using a modified intrinsic basis enriched meshless method[J]. Engineering Mechanics, 2015, 32(10):18-24. | |
[16] |
BELYTSCHKO T, LU Y Y, GU L. Element-free Galerkin methods[J]. International Journal for Numerical Methods in Engineering, 1994, 37(2):229-256.
doi: 10.1002/(ISSN)1097-0207 URL |
[17] | 吴学红, 李增耀, 申胜平, 等. 不规则区域热传导问题无网格Petrov-Galerkin方法的数值模拟[J]. 工程热物理学报, 2009, 30(8):1350-1352. |
WU Xuehong, LI Zengyao, SHEN Shengping, et al. Numerical simulation of heat conduction problems on irregular domain by using MLPG method[J]. Journal of Engineering Thermophysics, 2009, 30(8):1350-1352. | |
[18] |
LI Y, LIU G R. An element-free smoothed radial point interpolation method (EFS-RPIM) for 2D and 3D solid mechanics problems[J]. Computers & Mathematics With Applications, 2019, 77(2):441-465.
doi: 10.1016/j.camwa.2018.09.047 URL |
[19] |
HE Y Q, YANG H T, DEEKS A J. An element-free Galerkin scaled boundary method for steady-state heat transfer problems[J]. Numerical Heat Transfer, Part B: Fundamentals, 2013, 64(3):199-217.
doi: 10.1080/10407790.2013.791777 URL |
[20] |
LI Q H, CHEN S S, LUO X M. Steady heat conduction analyses using an interpolating element-free Galerkin scaled boundary method[J]. Applied Mathematics and Computation, 2017, 300:103-115.
doi: 10.1016/j.amc.2016.12.007 URL |
[21] | 王峰, 周宜红, 林皋, 等. 二维稳态热传导问题改进的EFG-SBM法[J]. 工程热物理学报, 2017, 38(6):1288-1299. |
WANG Feng, ZHOU Yihong, LIN Gao, et al. Improved element-free Galerkin scaled boundary method for two-dimensional steady heat transfer problems[J]. Journal of Engineering Thermophysics, 2017, 38(6):1288-1299. | |
[22] |
GU L. Moving Kriging interpolation and element-free Galerkin method[J]. International Journal for Numerical Methods in Engineering, 2003, 56(1):1-11.
doi: 10.1002/(ISSN)1097-0207 URL |
[23] |
DAI B D, ZHENG B J, LIANG Q X, et al. Numerical solution of transient heat conduction problems using improved meshless local Petrov-Galerkin method[J]. Applied Mathematics and Computation, 2013, 219(19):10044-10052.
doi: 10.1016/j.amc.2013.04.024 URL |
[24] |
CHEN S S, LI Q H, LIU Y H. A scaled boundary node method applied to two-dimensional crack problems[J]. Chinese Physics B, 2012, 21(11):110207.
doi: 10.1088/1674-1056/21/11/110207 URL |
[25] | 王峰. 改进的无网格法求解温度场和温度应力及其在水工结构分析中的应用[D]. 大连: 大连理工大学, 2015. |
WANG Feng. Improved meshless method for the solution of temperature field and thermal stress and its application to hydraulic structure analysis[D]. Dalian: Dalian University of Technology, 2015. | |
[26] | 王峰, 林皋, 李洋波, 等. 非均质材料热传导问题的扩展无单元伽辽金法[J]. 华中科技大学学报(自然科学版) , 2019, 47(12):116-120. |
WANG Feng, LIN Gao, LI Yangbo, et al. Extended element-free Galerkin method for steady heat conduction problem of inhomogenous material[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition) , 2019, 47(12):116-120. | |
[27] |
ZHENG B J, DAI B D. A meshless local moving Kriging method for two-dimensional solids[J]. Applied Mathematics and Computation, 2011, 218(2):563-573.
doi: 10.1016/j.amc.2011.05.100 URL |
[28] |
DEEKS A J. Prescribed side-face displacements in the scaled boundary finite-element method[J]. Computers & Structures, 2004, 82(15/16):1153-1165.
doi: 10.1016/j.compstruc.2004.03.024 URL |
[29] | 李鹏. 热流和渗流问题的等几何比例边界有限元方法及其在大坝工程中的应用[D]. 大连: 大连理工大学, 2018. |
LI Peng. Isogeometric scaled boundary finite element method in heat transfer and seepage flow problems and the application to dams[D]. Dalian: Dalian University of Technology, 2018. | |
[30] |
LI F Z, REN P H. A novel solution for heat conduction problems by extending scaled boundary finite element method[J]. International Journal of Heat and Mass Transfer, 2016, 95:678-688.
doi: 10.1016/j.ijheatmasstransfer.2015.12.019 URL |
[1] | 窦怡彬, 陈昂, 陆云超, 刘陆广, 李宗阳. 基于Levenberg-Marquardt算法的材料温度相关热物性参数辨识[J]. 空天防御, 2022, 5(2): 17-26. |
[2] | 赵长颖,王博翔,陈杰,张文斌,黄天成,刘梦琦. 极限尺度下不同传热形式是否有统一的理论描述?[J]. 上海交通大学学报, 2021, 55(Sup.1): 108-109. |
[3] | 杨万友,王家序,黄彦彦,周青华,杨勇. 热载荷作用下颗粒增强复合材料温升分布数值模拟[J]. 上海交通大学学报, 2019, 53(11): 1342-1351. |
[4] | 徐斌, 徐满清, 王建华. 饱和土体固结3D比例边界有限元法分析[J]. 上海交通大学学报, 2016, 50(01): 8-16. |
[5] | 蒋兰芳a,刘红b,柴国钟b,杨友东a,竺炯林b. 稳态热传导线源识别反问题的数值通解方法[J]. 上海交通大学学报(自然版), 2014, 48(02): 265-270. |
[6] | 盛宏玉,李和平,叶建乔,巫绪涛. 组合实心圆柱体热传导瞬态分析的状态变量法 [J]. 上海交通大学学报(自然版), 2011, 45(02): 247-0251. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||