上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (9): 1237-1248.doi: 10.16183/j.cnki.jsjtu.2023.545
收稿日期:2023-10-26
修回日期:2024-01-03
接受日期:2024-01-17
出版日期:2025-09-28
发布日期:2025-09-25
通讯作者:
华 浩,副教授,博士生导师;E-mail:作者简介:栗大林(1997—),硕士生,从事高性能电动机研究.
基金资助:
LI Dalin, HUA Hao(
), LI Ran, XU Shaolun, QI Wenjuan
Received:2023-10-26
Revised:2024-01-03
Accepted:2024-01-17
Online:2025-09-28
Published:2025-09-25
摘要:
高功率密度是航空飞行器用电动机关键性能需求,电动机转子结构对功率密度指标具有显著影响.采用磁极偏移结构提高永磁同步电动机功率密度和永磁体利用率.针对150 kW、12 000 r/min额定工作点,基于遗传优化算法开展表贴式、表嵌式以及表嵌式磁极偏移结构永磁同步电动机的优化设计和性能对比研究,并在表嵌式磁极偏移结构基础上对比不同填充材料、磁极偏移角的影响.结果表明,表嵌式磁极偏移结构电动机相比于表贴式结构电动机,可以将功率密度提高2.1%,永磁体用量减小17.6%,转矩脉动降低11.6%,具有良好的应用潜力.
中图分类号:
栗大林, 华浩, 李然, 许少伦, 齐文娟. 高功率密度表嵌式磁极偏移永磁电动机转矩性能提升[J]. 上海交通大学学报, 2025, 59(9): 1237-1248.
LI Dalin, HUA Hao, LI Ran, XU Shaolun, QI Wenjuan. Torque Improvement for High Power Density Machines with Shifted Surface-Inserted Permanent Magnets[J]. Journal of Shanghai Jiao Tong University, 2025, 59(9): 1237-1248.
表4
额定效率时3种拓扑结构最佳设计点性能对比
| 拓扑 结构 | 定子 叠长/ mm | 半匝 线圈长/ mm | 铜耗/ W | 铁耗/ W | 转子 涡流 耗/W | 反电 势基 波/V | 反电势 THD/% | 铜 质量/ kg | 铁 质量/ kg | 永磁 体质 量/kg | 有效 材料 总质 量/kg | 功率 密度/ (kW· kg-1) | 转矩 密度/ (N·m· kg-1) | 额定 转矩 脉动/% | 磁钢 利用率/ (N·m· kg-1) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| SPM | 58.6 | 111.4 | 1 801 | 1 496 | 238 | 505 | 23.30 | 2.76 | 4.47 | 1.65 | 8.93 | 16.8 | 13.37 | 11.20 | 72.3 |
| SIPM | 55.4 | 108.5 | 2 050 | 1 256 | 234 | 443 | 20.30 | 3.15 | 4.27 | 1.51 | 8.96 | 16.74 | 13.32 | 11.80 | 79.0 |
| SIPM-shifting | 55.6 | 108.4 | 2 032 | 1 268 | 242 | 438 | 14.70 | 3.12 | 4.23 | 1.36 | 8.75 | 17.14 | 13.64 | 9.90 | 87.8 |
| [1] | MADONNA V, PAOLO G, GALEA M. Electrical power generation in aircraft: Review challenges and opportunities[J]. IEEE Transactions on Transportation Electrification, 2018, 4(3): 646-659. |
| [2] | GERADA C, GALEA M, KLADAS G. Electrical machines for aerospace applications[C]// IEEE Workshop on Electrical Machines Design, Control and Diagnosis. Italy: IEEE, 2015: 79-84. |
| [3] | SAYED E, ABDALMAGID M, PIETRINI G, et al. Review of electric machines in more-/hybrid-/turbo-electric aircraft[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2976-3005. |
| [4] | 张鲁华, 郭家虎, 蔡旭, 等. 恒定交流励磁时双馈感应发电机的短路电流[J]. 上海交通大学学报, 2010, 44(7): 1000-1004. |
| ZHANG Luhua, GUO Jiahu, CAI Xu, et al. Fault currents of the doubly fed induction generator with constant AC excitation[J]. Journal of Shanghai Jiao Tong University, 2010, 44(7): 1000-1004. | |
| [5] | EL-REFAIE A, OSAMA M. High specific power electrical machines: A system perspective[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(1): 88-93. |
| [6] | 张卓然, 陆嘉伟, 张伟秋, 等. 飞机电推进系统高效能电机及其驱动控制技术[J]. 中国电机工程学报, 2024, 44(16): 6610-6632. |
| ZHANG Zhuoran, LU Jiawei, ZHANG Weiqiu, et al. High-performance electric machine and drive technologies for aircraft electric propulsion systems[J]. Proceedings of the CSEE, 2024, 44(16): 6610-6632. | |
| [7] | FILIPENKO M. HTS-Technology for hybrid electric aircraft[C]// European Cryogenic Days 2017. Karlsruhe, Germany: KIT, 2017. |
| [8] | GOLOVANOV D, GERAD D, SALA D. et al. 4 MW class high power density generator for future hybrid-electric aircraft[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2952-2964. |
| [9] | WANG S, ZHANG S, MA S. An energy efficiency optimization method for fixed pitch propeller electric aircraft propulsion systems[J]. IEEE Access, 2019, 7: 159986-159993. |
| [10] | 范振伟, 杨凤田, 项松, 等. 我国电动飞机发展现状及建议[J]. 航空科学技术, 2019, 30(11): 18-21. |
| FAN Zhenwei, YANG Fengtian, XIANG Song, et al. Present situation and advice of electric aircraft development in China[J]. Aeronautical Science & Technology, 2019, 30(11): 18-21. | |
| [11] |
侯珏, 姚栋伟, 吴锋, 等. 混合励磁电机的电动汽车增程器控制策略[J]. 上海交通大学学报, 2021, 55(2): 206-212.
doi: 10.16183/j.cnki.jsjtu.2019.203 |
| HOU Jue, YAO Dongwei, WU Feng, et al. Control strategy for electric vehicle range-extender based on hybrid excitation generator[J]. Journal of Shanghai Jiao Tong University, 2021, 55(2): 206-212. | |
| [12] | 魏长河, 王忠, 梁磊, 等. 集成发电机/起动机技术混合动力的动态转矩协调控制策略[J]. 上海交通大学学报, 2010, 44(10): 1356-1361. |
| WEI Changhe, WANG Zhong, LIANG Lei, et al. Dynamic torque coordination control strategy of integrated starter alternator damper (ISAD) hybrid[J]. Journal of Shanghai Jiao Tong University, 2010, 44(10): 1356-1361. | |
| [13] | BIANCHI N, BOLOGNANI S. Design techniques for reducing the cogging torque in surface-mounted PM motors[J]. IEEE Transactions on Industry Applications, 2002, 38(5): 1259-1265. |
| [14] | 杜鑫鑫. 基于磁极偏移的表嵌式永磁电机转矩脉动抑制方法研究[D]. 镇江: 江苏大学, 2018. |
| DU Xinxin. Research on the method of reducing torque ripple for surface-insert permanent magnet motor based on magnet shifting[D]. Zhenjiang: Jiang-su University, 2018. | |
| [15] | DU X, LIU G, CHEN Q, et al. Optimal design of an inset PM motor with assisted barriers and magnet shifting for improvement of torque characteristics[J]. IEEE Transactions on Magnetics, 2017, 53(11): 1-4. |
| [16] | QI J, ZHU Z, YAN L, et al. Suppression of torque ripple for consequent pole PM machine by asymmetric pole shaping method[J]. IEEE Transactions on Industry Applications, 2022, 58(3): 3545-3557. |
| [17] | ALSAWALHI J. An asymmetric salient permanent magnet synchronous machine for wide constant power speed range applications[D]. USA: Purdue University, 2014. |
| [18] | ZHAO W, LIPO T, KWON B. Optimal design of a novel asymmetrical rotor structure to obtain torque and efficiency improvement in surface inset PM motors[J]. IEEE Transactions on Magnetics, 2015, 51(3): 1-4. |
| [19] | 梁新宇. 凸极偏置型表面镶嵌式永磁同步电机设计与优化[D]. 济南: 山东大学, 2022. |
| LIANG Xinyu. Design and optimization of salient pole offset surface insert permanent magnet synchronous motor[D]. Jinan: Shandong University, 2022. | |
| [20] | ZHU Z, XIAO Y. Novel magnetic-field-shifting techniques in asymmetric rotor pole interior PM machines with enhanced torque density[J]. IEEE Transactions on Magnetics, 2021, 58(2): 1-10. |
| [21] | DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. |
| [22] |
孙鸿强, 张占月, 方宇强. 基于NSGA-II算法的编队卫星重构策略[J]. 上海交通大学学报, 2021, 55(3): 320-330.
doi: 10.16183/j.cnki.jsjtu.2019.376 |
| SUN Hongqiang, ZHANG Zhanyue, FANG Yuqiang. Formation satellite reconstruction strategy based on NSGA-II algorithm[J]. Journal of Shanghai Jiao Tong University, 2021, 55(3): 320-330. | |
| [23] | ZHU Z, ZHENG Y, LIU Y, et al. Effect of end-winding on electromagnetic performance of fractional slot and vernier PM machines with different slot/pole number combinations and winding configurations[J]. IEEE Access, 2022, 10: 49934-49955. |
| [24] | VERMA S, PANT M, SNASEL V. A comprehensive review on NSGA-II for multi-objective combinatorial optimization problems[J]. IEEE Access, 2021, 9: 57757-57791. |
| [1] | 车志远, 余海涛, 庞玉毅, 章嘉辉. 基于跟踪微分器的永磁同步电动机双时间尺度滑模控制[J]. 上海交通大学学报, 2025, 59(9): 1249-1259. |
| [2] | 施新华, 周芝峰. 永磁同步电动机自适应弱磁控制策略[J]. 实验室研究与探索, 2017, 36(5): 40-43. |
| [3] | 曾德鹏, 徐永向, 邹继斌. 一种针对集中绕组多单元永磁同步电动机的电感解析计算方法[J]. 上海交通大学学报, 2015, 49(11): 1706-1710. |
| [4] | 曾金玲1,许雨2,韩业鹏2,李冠华2,张群2. 基于多场耦合技术的永磁同步电动机散热分析[J]. 上海交通大学学报(自然版), 2014, 48(09): 1246-1251. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||