上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (9): 1225-1236.doi: 10.16183/j.cnki.jsjtu.2023.473
• 新型电力系统与综合能源 • 下一篇
收稿日期:2023-09-18
修回日期:2023-11-20
接受日期:2024-01-05
出版日期:2025-09-28
发布日期:2025-09-25
通讯作者:
陈 俐,教授,博士生导师,电话(Tel.):021-34208149;E-mail:作者简介:傅圣来(1998—),硕士生,从事混合动力船舶模式切换控制研究.
基金资助:
FU Shenglai1,2, CHEN Li1,2(
), CHEN Ziqiang1,2
Received:2023-09-18
Revised:2023-11-20
Accepted:2024-01-05
Online:2025-09-28
Published:2025-09-25
摘要:
并联式气电混合动力系统排放少、动力性好,在低碳船舶上的应用前景广阔.但是,受多个执行延迟不确定的影响,混合动力模式切换过程中传动轴系易发生转速异常波动甚至剧烈冲击.提出级联内模控制(IMC)思路,设计显式包含名义延迟信息的滤波器,提高转速跟踪性能,消除延迟的影响.首先建立动力传动系统动力学模型,然后根据切换过程以离合器为分界的传动机理,设计级联IMC,包括抗饱和补偿器、两级跟踪控制器和两级抗干扰控制器,推导满足不确定延迟上界的鲁棒稳定性条件.仿真与台架试验结果表明,级联IMC对不确定延迟具有良好的鲁棒性,显著降低模式切换过程轴系冲击度,实现平稳切换.
中图分类号:
傅圣来, 陈俐, 陈自强. 考虑不确定延迟的并联式气电混合动力系统模式切换控制[J]. 上海交通大学学报, 2025, 59(9): 1225-1236.
FU Shenglai, CHEN Li, CHEN Ziqiang. Mode Transition Control of Parallel Gas-Electric Hybrid Power System with Uncertain Delay[J]. Journal of Shanghai Jiao Tong University, 2025, 59(9): 1225-1236.
表1
动力系统模型参数
| 参数 | 取值 | 参数 | 取值 |
|---|---|---|---|
| Je/(kg·m2) | 1.85 | k1/(N·m·rad-1) | 600 |
| Jc1/(kg·m2) | 0.03 | k2/(N·m·rad-1) | 30 000 |
| Jc2/(kg·m2) | 0.03 | i1 | 4.5 |
| Jpro/(kg·m2) | 2.50 | i2 | 3 |
| Jfd/(kg·m2) | 0.30 | τ1/s | 0.20 |
| Jtm/(kg·m2) | 0.40 | τ2/s | 0.10 |
| c1/(N·m·s·rad-1) | 30 | τ3/s | 0.03 |
| c2/(N·m·s·rad-1) | 1 000 | D/m | 1.05 |
| ce/(N·m·s·rad-1) | 0.03 | KQ | 0.015 |
| ctm/(N·m·s·rad-1) | 0.03 | ρ/(kg·m-3) | 1 025 |
| [1] | 范爱龙, 熊宇祺, 贺亚鹏, 等. 长江船舶替代燃料动力全生命周期碳足迹研究[J]. 船舶工程, 2022, 44(12): 70-75. |
| FAN Ailong, XIONG Yuqi, HE Yapeng, et al. Study on life-cycle carbon footprint of alternative fuel power for ships in the Yangtze River[J]. Journal of Ship Engineering, 2022, 44(12): 70-75. | |
| [2] | 宋恩哲, 蒋中州, 姚崇, 等. 船用柴油/天然气双燃料发动机模式切换控制策略研究[J]. 中国机械工程, 2022, 33(4): 388-396. |
| SONG Enzhe, JIANG Zhongzhou, YAO Chong, et al. Research on mode switching control strategy of marine diesel/natural gas dual-fuel engine[J]. China Mechanical Engineering, 2022, 33(4): 388-396. | |
| [3] | SUN X J, YAO C, SONG E Z, et al. Dynamic characteristics and energy efficiency enalysis of marine parallel gas-electric hybrid power system[J]. Propulsion Technology, 2022, 43(5): 379-390. |
| [4] | 李泽皓, 王甫, 胡卓, 等. 混合动力船舶能源配置与推进系统发展现状[J]. 大连海事大学学报, 2023, 49(3): 74-87. |
| LI Zehao, WANG Fu, HU Zhuo, et al. Development status of energy allocation and propulsion system for hybrid electric ships[J]. Journal of Dalian Maritime University, 2023, 49(3): 74-87. | |
| [5] | OKAMURA M, TAKAOKA T. The evolution of electric components in prius[J]. IEEJ Journal of Industry Applications, 2022, 11(1): 1-6. |
| [6] | 李豪迪, 赵治国, 唐鹏, 等. 基于负载补偿的功率分流混合动力系统模式切换性能测试方法[J]. 汽车工程, 2023, 45(10): 1908-1922. |
| LI Haodi, ZHAO Zhiguo, TANG Peng, et al. Test method for mode switching performance of power split hybrid power system based on load compensation[J]. Automotive Engineering, 2023, 45(10): 1908-1922. | |
| [7] | 金立源, 刘佳彬, 孟嗣斐, 等. 并联式船舶气电混合动力系统动态加速性能仿真[J]. 柴油机, 2022, 44(2): 36-43. |
| JIN Liyuan, LIU Jiabin, MENG Sifei, et al. Simulation of dynamic acceleration performance of parallel marine gas-electric hybrid power system[J]. Diesel Engine, 2022, 44(2): 36-43. | |
| [8] | 朱剑昀, 陈俐, 彭程. 混合动力船舶模式切换过程力矩协调控制[J]. 中国机械工程, 2017, 28(23): 2859-2867. |
| ZHU Jianyun, CHEN Li, PENG Cheng. Torque coordination control during mode switching of hybrid electric ship[J]. China Mechanical Engineering, 2017, 28(23): 2859-2867. | |
| [9] | 张益敏. 基于某内河公务船的柴电混合动力模式切换研究[D]. 上海: 上海交通大学, 2018. |
| ZHANG Yimin. Research on diesel-electric hybrid power mode switching based on a river official ship[D]. Shanghai: Shanghai Jiao Tong University, 2018. | |
| [10] | 苗东晓. 考虑执行延迟的船舶并联式混合动力系统模式切换控制[D] .上海: 上海交通大学, 2021. |
| MIAO Dongxiao. Mode transition control of marine parallel hybrid power system considering execution delay[D]. Shanghai: Shanghai Jiao Tong University, 2021. | |
| [11] | MIAO D, CHEN L, YI P. Internal model control during mode transition subject to time delay for hybrid electric vehicles[DB/OL]. (2020-04-14)[2023-09-10]. https://www.sae.org/publications/technical-papers/content/2020-01-0961/. |
| [12] | SALAVATI S, GRIGORIADIS K, FRANCHEK M. An explicit robust stability condition for uncertain time-varying first-order plus dead-time systems[J]. Isa Transactions, 2022, 126: 171-179. |
| [13] |
程小宣, 陈俐. 基于稳定性分析的电控离合器任务调度周期设计[J]. 上海交通大学学报, 2019, 53(4): 438-446.
doi: 10.16183/j.cnki.jsjtu.2019.04.007 |
| CHENG Xiaoxuan, CHEN Li. Task scheduling cycle design of electronic control clutch based on stability analysis[J]. Journal of Shanghai Jiao Tong University, 2019, 53(4): 438-446. | |
| [14] | DU F, CAI Y, GUAN Z, et al. Optimization research on CAN bus transmission delay[J]. Automobile Technology, 2022(1): 35-40. |
| [15] | ZHOU H, FU J, ZENG Z, et al. Adaptive robust tracking control for underwater gliders with uncertainty and time-varying input delay[J]. Ocean Engineering, 2021, 240: 3-4. |
| [16] | 席龙飞, 张会生. 小功率内河船舶油电混合动力系统的建模及仿真研究[J]. 机电设备, 2014, 31(2): 23-27. |
| XI Longfei, ZHANG Huisheng. Simulation and analysis of a variable speed variable displacement vehicle[J]. Mechanical and Electrical Equipment, 2014, 31(2): 23-27. | |
| [17] | 宋恩哲, 孙晓军, 姚崇, 等. 船舶混合动力系统模式切换与动态协调控制[J]. 哈尔滨工程大学学报, 2022, 43(4): 522-528. |
| SONG Enzhe, SUN Xiaojun, YAO Chong, et al. Mode switching and dynamic coordination control of marine hybrid power system[J]. Journal of Harbin Engineering University, 2022, 43(4): 522-528. | |
| [18] | YANG C, JIAO X H, LI L, et al. A robust H-infinity control-based hierarchical mode transition control system for plug-in hybrid electric vehicle[J]. Mechanical Systems and Signal Processing, 2018, 99: 326-344. |
| [19] | YANG C, SHI Y, LI L, et al. Efficient mode transition control for parallel hybrid electric vehicle with adaptive dual-loop control framework[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1519-1532. |
| [20] | PENG C, CHEN L. Model reference adaptive control dased on adjustable reference model during mode transition for hybrid electric vehicles[J]. Mechatronics, 2022, 87: 92-97. |
| [21] | SU Y Z, HU M H, SU L, et al. Dynamic coordinated control during mode transition process for a compound power-split hybrid electric vehicle[J]. Mechanical Systems and Signal Processing, 2018, 107: 221-240. |
| [22] | 周嘉俊, 吴萌岭, 刘宇康, 等. 基于改进史密斯预估器的列车制动减速度控制研究[J]. 同济大学学报(自然科学版), 2020, 48(11): 1657-1667. |
| ZHOU Jiajun, WU Mengling, LIU Yukang, et al. Research on train braking deceleration control based on improved smith predictor[J]. Journal of Tongji University (Natural Science Edition), 2020, 48(11): 1657-1667. | |
| [23] | MANFREDMORARI, EVANGHELOSZAFIRIOU. Robust process control[M]. New Jersey, USA: Jeffrey C. Kantor, 1989. |
| [24] | LI Y L, YIN Y X, ZHANG D H. IMC-based design for teleoperation systems with time delays[J]. International Journal of Control Automation and Systems, 2018, 16(2): 887-895. |
| [25] | 杜文龙, 陈俐, 刘文通, 等. 考虑延迟的线控转向二自由度内模控制[J]. 中国机械工程, 2021, 32(16): 1904-1911. |
| DU Wenglong, CHEN Li, LIU Wentong, et al. Two-degree-of-freedom internal model control of steering-by-wire considering delay[J]. China Mechanical Engineering, 2021, 32(16): 1904-1911. | |
| [26] |
刘文通, 陈俐, 陈峻. 考虑延迟的汽车线控转向系统自适应内模控制[J]. 上海交通大学学报, 2021, 55(10): 1210-1218.
doi: 10.16183/j.cnki.jsjtu.2020.182 |
| LIU Wentong, CHEN Li, CHEN Jun. Adaptive internal model control for automotive steer-by-wire system considering delay[J]. Journal of Shanghai Jiao Tong University, 2021, 55(10): 1210-1218. | |
| [27] | 周天豪, 杨智, 祝长生, 等. 电磁轴承高速电机转子系统的内模-PID控制[J]. 电工技术学报, 2020, 35(16): 3414-3425. |
| ZHOU Tianhao, YANG Zhi, ZHU Changsheng, et al. Internal modal-PID control of rotor system of high speed motor with electromagnetic bearing[J]. Transactions of China Electrotechnical Society, 2020, 35(16): 3414-3425. | |
| [28] | DING Z, CHEN L, MIAO D X. Decoupling internal model control for the robust engagement of clutches[J]. Mechatronics, 2021, 73: 102466. |
| [29] | OGATA K. Modern control engineering[M]. 5th ed. London,UK: Pearson, 2009. |
| [1] | 周宇, 贾军, 李豪, 杜毅晖, 乔文远. 智能飞行器认知诱骗场景生成技术[J]. 空天防御, 2025, 8(4): 9-19. |
| [2] | 范宏, 何杰, 田书欣. 变步长仿真与改进熵权法联动的综合能源系统鲁棒性评估方法[J]. 上海交通大学学报, 2024, 58(1): 59-68. |
| [3] | 李林霖, 高飞扬, 郑雄飞, 张黎明, 李世杰, 王赫然. 多结构柔性夹持器提高夹持的鲁棒性[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 307-311. |
| [4] | . 考虑电动汽车行为异质性的鲁棒性充电需求预测方法和充电网络规划研究[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 136-149. |
| [5] | 刘邱, 赵东亚. 单输入单输出系统离散积分滑模预测控制[J]. 上海交通大学学报, 2020, 54(9): 898-903. |
| [6] | 张建军, 吴中华, 刘群坡, 王红旗, 刘卫东. 主从机械手遥操作双边自适应阻抗控制策略[J]. 上海交通大学学报, 2020, 54(6): 615-623. |
| [7] | 方佳, 陆志强. 考虑设备故障的鲁棒调度计划模板的建模优化[J]. 上海交通大学学报, 2020, 54(12): 1278-1290. |
| [8] | 李冬辉,高峰. 基于扰动观测器的压缩式制冷系统改进Smith预估解耦控制[J]. 上海交通大学学报, 2019, 53(5): 593-599. |
| [9] | 韩刚,蔡旭. 不平衡电网下风电并网变流器的滑模电流控制[J]. 上海交通大学学报, 2018, 52(9): 1065-1071. |
| [10] | 姚来鹏, 侯保林. 基于干扰观测器的交流伺服系统滑模控制[J]. 上海交通大学学报, 2016, 50(7): 1119-1124. |
| [11] | 周炳海, 殷萌. 不定时间下带资源约束的手术室鲁棒调度方法[J]. 上海交通大学学报, 2015, 49(12): 1797-1802. |
| [12] | 吕学勤1,张轲2,吴毅雄2. 移动焊接机器人轨迹跟踪控制机制及实验[J]. 上海交通大学学报(自然版), 2015, 49(03): 371-374. |
| [13] | 肖慧孝,杨建国,张毅. 基于状态空间模型的机床热误差动态建模[J]. 上海交通大学学报(自然版), 2014, 48(1): 22-26. |
| [14] | 张晓迪,蔡云泽,何星,张卫东. 基于神经网络的不稳定时滞对象控制[J]. 上海交通大学学报(自然版), 2014, 48(07): 1033-1038. |
| [15] | 王鲜芳1,苗军2,詹世涛2,3,钱志源2,4,王岁花1. 二轴导引头视线指向回路的鲁棒性设计[J]. 上海交通大学学报(自然版), 2014, 48(05): 735-740. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||