上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (3): 365-375.doi: 10.16183/j.cnki.jsjtu.2023.354
娄为1, 胡蓉1, 于谨铭2(), 张希鹏1, 樊飞龙2, 刘嵩源2
收稿日期:
2023-07-28
修回日期:
2023-09-22
接受日期:
2023-10-09
出版日期:
2025-03-28
发布日期:
2025-04-02
通讯作者:
于谨铭,硕士生;E-mail: yujinming@sjtu.edu.cn.
作者简介:
娄 为(1973—),硕士,高级工程师,研究方向为电力系统自动化.
基金资助:
LOU Wei1, HU Rong1, YU Jinming2(), ZHANG Xipeng1, FAN Feilong2, LIU Songyuan2
Received:
2023-07-28
Revised:
2023-09-22
Accepted:
2023-10-09
Online:
2025-03-28
Published:
2025-04-02
摘要:
在抽水蓄能等大规模储能电站同时参与现货交易与电网调度的情况下,电网对抽水蓄能的调度难以直接触及对现货市场中可再生电能的消纳.对此,考虑电能现货交易为电网抽水蓄能调度带来的影响,提出内嵌市场博弈模型的多主体协调调度方法.首先,结合电力现货市场出清模型,以抽水蓄能电站现货市场经济收益最大化为目标,制定抽水蓄能电站参与电能现货交易策略.然后,结合两部制电价政策,以最小化电网运行成本与全网新能源弃用量为目标,制定电网运营商对抽水蓄能的容量分配与功率调度策略.制定所提调度策略需要求解内嵌博弈模型的双层优化问题,即抽水蓄能电站参与电能现货市场交易决策问题和内嵌市场博弈模型的抽水蓄能容量分配与功率调度策略优化问题.抽水蓄能参与现货市场决策问题服从Stackelberg博弈模型,通过强对偶理论将其内嵌至抽水蓄能容量分配与功率调度策略优化问题,并通过第2代非支配遗传算法(NSGA-II)对抽水蓄能容量分配与功率调度策略双优化问题进行求解.最后,依托华东某抽水蓄能电站的运行数据构建仿真模型,对所提方法进行验证.测试结果表明,所提方法可以有效协调电网直接调度与抽水蓄能参与电能现货市场的决策方案,提升抽水蓄能经济效益,降低电网运行成本,提高新能源消纳水平.
中图分类号:
娄为, 胡蓉, 于谨铭, 张希鹏, 樊飞龙, 刘嵩源. 内嵌市场博弈模型的电网-抽水蓄能多主体协调调度[J]. 上海交通大学学报, 2025, 59(3): 365-375.
LOU Wei, HU Rong, YU Jinming, ZHANG Xipeng, FAN Feilong, LIU Songyuan. Multi-Agent Coordinated Dispatch of Power Grid and Pumped Hydro Storage with Embedded Market Game Model[J]. Journal of Shanghai Jiao Tong University, 2025, 59(3): 365-375.
[1] |
石文辉, 屈姬贤, 罗魁, 等. 高比例新能源并网与运行发展研究[J]. 中国工程科学, 2022, 24(6): 52-63.
doi: 10.15302/J-SSCAE-2022.07.006 |
SHI Wenhui, QU Jixian, LUO Kui, et al. Grid-integration and operation of high-proportioned new energy[J]. Strategic Study of CAE, 2022, 24(6): 52-63.
doi: 10.15302/J-SSCAE-2022.07.006 |
|
[2] | 李明节, 陈国平, 董存, 等. 新能源电力系统电力电量平衡问题研究[J]. 电网技术, 2019, 43(11): 3979-3986. |
LI Mingjie, CHEN Guoping, DONG Cun, et al. Research on power balance of high proportion renewable energy system[J]. Power System Technology, 2019, 43(11): 3979-3986. | |
[3] | LALEMAN R, ALBRECHT J. Nuclear and old fossil phase out scenarios: Assessment of shortages, surpluses and the load factor of flexible assets with high renewable generation targets—A Belgian case study[J]. International Journal of Electrical Power & Energy Systems, 2016, 1(74): 338-347. |
[4] | 邱燕超. 推动抽水蓄能装备制造业向高端迈进[N]. 中国电力报, 2023-04-28(003). |
QIU Yanchao. Promote the high-end development of pumped storage equipment manufacturing industry[N]. China Electric Power News, 2023-04-28(003). | |
[5] | 郝军. “双碳”目标下抽水蓄能发展思考[J]. 西北水电, 2022, 199(6): 138-143. |
HAO Jun. Thinking on the development of pumped storage power stations under the “carbon peak and neutrality” targets[J]. Northwest Hydropower, 2022, 199(6): 138-143. | |
[6] | 刘奕彤, 艾欣. 基于主从博弈的独立储能系统参与日前现货联合市场的交易策略研究[J]. 现代电力, 2023, 40(5): 751-759. |
LIU Yitong, AI Xin. Research on trading strategy of independent energy storage system participating in day ahead spot joint market based on master-slave game[J]. Modern Electric Power, 2023, 40(5): 751-759. | |
[7] | 陈中瑶, 林凯颖, 王蓓蓓, 等. 单侧放开市场中基于Stackelberg均衡分析的最低效率损失需求响应激励机制设计[J]. 电网技术, 2022, 46(5): 1790-1800. |
CHEN Zhongyao, LIN Kaiying, WANG Beibei, et al. Design of demand response incentive mechanism considering lowest efficiency loss based on Stackelberg equilibrium analysis in unilateral liberalization market[J]. Power System Technology, 2022, 46(5): 1790-1800. | |
[8] | 卢治霖, 尚楠, 张妍, 等. 发电企业参与容量市场的纳什-主从博弈模型[J]. 电力系统自动化, 2023, 47(16): 94-102. |
LU Zhilin, SHANG Nan, ZHANG Yan, et al. Nash-Stackelberg game model for power generation enterprises participating in capacity market[J]. Automation of Electric Power Systems, 2023, 47(16): 94-102. | |
[9] | 李亚鹏, 赵麟, 王祥祯, 等. 不确定碳-电耦合市场下梯级水电双层竞价模型[J]. 电力系统自动化, 2023, 47(20): 83-94. |
LI Yapeng, ZHAO Lin, WANG Xiangzhen, et al. Bi-level bidding model for cascaded hydropower under uncertain carbonelectricity coupled market[J]. Automation of Electric Power Systems, 2023, 47(20): 83-94. | |
[10] |
李迁, 姜欣, 张钧钊, 等. 规模化储能参与电力现货市场的商业模式[J]. 上海交通大学学报, 2023, 57(12): 1543-1558.
doi: 10.16183/j.cnki.jsjtu.2022.187 |
LI Qian, JIANG Xin, ZHANG Junzhao, et al. Business models for large-scale energy storage systems to participate in electricity spot market[J]. Journal of Shanghai Jiao Tong University, 2023, 57(12): 1543-1558. | |
[11] | ANTWEILER W. A two-part feed-in-tariff for intermittent electricity generation[J]. Energy Economics, 2017, 65: 458-470. |
[12] | 姚丛霄. 参与电网宽时间尺度调节的抽/储电站综合效能评估研究[D]. 北京: 华北电力大学(北京), 2022. |
YAO Congxiao. Research on the comprehensive performance evaluation of pumping/storage station participiating in serving power grids in wide time scale[D]. Beijing: North China Electric Power University (Beijing), 2022. | |
[13] | 刘军, 李凌阳, 吴梦凯, 等. 分布式抽水蓄能电站与新能源发电联合参与现货市场的两阶段优化运行策略[J]. 浙江电力, 2023, 42(2): 50-58. |
LIU Jun, LI Lingyang, WU Mengkai, et al. A two-stage optimal operation strategy of distributed pumped storage power plant and new energy power generation jointly participating in spot market[J]. Zhejiang Electric Power, 2023, 42(2): 50-58. | |
[14] | 王凯, 延肖何, 刘念. 基于投资组合理论的风光储场站参与多时间尺度电力现货市场的出力分配优化方法[J]. 工程科学与技术, 2023, 55(1): 101-109. |
WANG Kai, YAN Xiaohe, LIU Nian. Output allocation optimization method for the wind photovoltaic energy storage power station in the multi-time-scale electricity spot market under portfolio theory[J]. Advanced Engineering Sciences, 2023, 55(1): 101-109. | |
[15] | 孟繁林, 钟海旺, 夏清. 高比例可再生能源电力系统中电量约束型机组参与现货市场的机制[J]. 电网技术, 2023, 47(3): 1047-1055. |
MENG Fanlin, ZHONG Haiwang, XIA Qing. Spot market mechanism for energy constrained generation units in high proportion renewable energy power system[J]. Power System Technology, 2023, 47(3): 1047-1055. | |
[16] | GARCIA-GONZALEZ J, DE LA MUELA R M R, SANTOS L M, et al. Stochastic joint optimization of wind generation and pumped-storage units in an electricity market[J]. IEEE Transactions on Power Systems. 2008, 23(2): 460-468. |
[17] | SOUSA J, TEIXEIRA F, FAIAS S. Impact of a price-maker pumped storage hydro unit on the integration of wind energy in power systems[J]. Energy, 2014, 69: 3-11. |
[18] | PARASTEGARI M, HOOSHMAND R-A, KHODABAKHSHIAN A, et al. Joint operation of wind farms and pump-storage units in the electricity markets: Modeling, simulation and evaluation[J]. Simulation Modelling Practice and Theory, 2013, 37: 56-69. |
[19] | BARBOUR E, WILSON I.A. G, RADCLIFFE J, et al. A review of pumped hydro energy storage development in significant international electricity markets[J]. Renewable and Sustainable Energy Reviews, 2016, 61: 421-32. |
[20] | 国家发改委. 关于进一步完善抽水蓄能价格形成机制的意见[EB/OL]. (2021-04-30)[2023-06-28]. https://www.gov.cn/zhengce/zhengceku/2021-05/08/content_5605367.htm. |
The National Development and Reform Commission. Opinions on further improving the price formation mechanism of pumped storage energy[EB/OL]. (2021-04-30)[2023-06-28]. https://www.gov.cn/zhengce/zhengceku/2021-05/08/content_5605367.htm. | |
[21] | KONG Y G, KONG Z G, LIU Z Q, et al. Pumped storage power stations in China: The past, the present, and the future[J]. Renewable and Sustainable Energy Reviews, 2017, 71: 720-731. |
[22] | 姚俊伟, 汪萌, 赵红生, 等. 考虑成本回收的地方电网抽蓄容量优化配置[J]. 水电能源科学, 2022, 40(11): 208-211. |
YAO Junwei, WANG Meng, ZHAO Hongsheng, et al. Optimal allocation of pumped storage capacity of local power grid considering cost recovery[J]. Water Resources Science, 2022, 40(11): 208-211. | |
[23] |
李华, 郑洪纬, 周博文, 等. 综合智慧能源系统中抽水蓄能电站两部制电价研究[J]. 综合智慧能源, 2022, 44(7): 10-18.
doi: 10.3969/j.issn.2097-0706.2022.07.002 |
LI Hua, ZHENG Hongwei, ZHOU Bowen, et al. Two-part tariff for pumped storage power plants in an integrated intelligent energy system[J]. Integrated Intelligent Energy, 2022, 44(7): 10-18.
doi: 10.3969/j.issn.2097-0706.2022.07.002 |
|
[24] | LI H, ZHENG H W, ZHOU B W, et al. Two-part tariff of pumped storage power plants for wind power accommodation[J]. Sustainability, 2022, 14(9): 5603. |
[25] | 丁涛, 孙嘉玮, 黄雨涵, 等. 储能参与容量市场的国内外现状及机制思考[J]. 电力系统自动化, 2024, 48(6): 226-239. |
DING Tao, SUN Jiawei, HUANG Yuhan, et al. Domestic and foreign present situation of capacity market with energy storage and reflection on its mechanism[J]. Automation of Electric Power Systems, 2024, 48(6): 226-239. | |
[26] | 李红军, 李成仁, 王卫军. 当前抽水蓄能电站电价疏导问题分析[J]. 能源技术经济, 2010, 22(9): 38-42. |
LI Hongjun, LI Chengren, WANG Weijun. Analysis on current tariff-sharing issues for pumped-storage powerplants[J]. Energy Technology and Economics, 2010, 22(9): 38-42. | |
[27] |
刘飞, 车琰瑛, 田旭, 等. 新型电力系统下的抽水蓄能电站成本疏导机制:综述与展望[J]. 上海交通大学学报, 2023, 57(7): 757-768.
doi: 10.16183/j.cnki.jsjtu.2021.516 |
LIU Fei, CHE Yanying, TIAN Xu, et al. Cost sharing mechanisms of pumped storage stations in the new-type power system: Review and prospect[J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 757-768. | |
[28] | 尹积军, 吴文传. 浙江构建新型电力系统的技术路径与实践[J]. 中国电机工程学报, 2023, 43(14): 5404-5415. |
YIN Jijun, WU Wenchuan. Technical path and practice for constructing the new type power system in Zhejiang Province[J]. Proceedings of the CSEE, 2023, 43(14): 5404-5415. | |
[29] | 乔洪奎, 张义晗, 高美婷, 等. 关于新型电力系统中抽水蓄能电价机制的思考[J]. 水电与抽水蓄能, 2021, 7(6): 24-27. |
QIAO Hongkui, ZHANG Yihan, GAO Meiting, et al. Thinking about the price mechanism of pumped storage in new power systems[J]. Hydropower and Pumped Storage, 2021, 7(6): 24-27. | |
[30] | 肖健, 钏星, 彭依明, 等. 基于主从博弈的配电网分布式电源电能定价[J]. 电力系统及其自动化学报, 2022, 34(10): 32-41. |
XIAO Jian, CHUAN Xing, PENG Yiming, et al. Electricity pricing of distribution network with distributed generations based on Stackelberg game[J]. Proceedings of the CSU-EPSA, 2022, 34(10): 32-41. | |
[31] | 张衡, 张沈习, 程浩忠, 等. Stackelberg博弈在电力市场中的应用研究综述[J]. 电工技术学报, 2022, 37(13): 3250-3262. |
ZHANG Heng, ZHANG Shenxi, CHENG Hao-zhong, et al. A state-of-the-art review on Stackelberg game and its applications in power market[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3250-3262. | |
[32] | CHEN Z P, FAN F L, TAI N L, et al. Multi-objective voltage/VAR control for integrated port energy system considering multi-network integration[J]. Electrical Power and Energy Systems, 2023, 150: 109092. |
[1] | 刘长玺, 齐国民, 王继成, 李天野, 杨健, 雷霞. 考虑碳排放权交易的两阶段电力现货市场模式设计[J]. 上海交通大学学报, 2025, 59(3): 342-353. |
[2] | 劳文洁, 史林军, 吴峰, 杨冬梅, 李杨. 计及转速及功率限制的双馈抽蓄自适应调频控制[J]. 上海交通大学学报, 2025, 59(1): 28-37. |
[3] | 杨森, 郭宁, 张寿明. 不确定性条件下农业微电网与灌溉系统相结合的鲁棒优化调度[J]. 上海交通大学学报, 2024, 58(9): 1432-1442. |
[4] | 顾慧杰, 周华锋, 彭超逸, 胡亚平, 赵心怡, 谢俊, 施雄华. 含抽水蓄能电站的高比例新能源发电系统多时间尺度调度模型[J]. 上海交通大学学报, 2024, 58(12): 1957-1967. |
[5] | 任曦骏, 宋竹萌, 王宝, 叶钰童, 潘思佳, 王梦圆, 徐潇源. 输配电价改革背景下两部制电价的应用现状与发展前景[J]. 上海交通大学学报, 2024, 58(10): 1479-1488. |
[6] | 刘飞, 车琰瑛, 田旭, 许德操, 周慧洁, 李知艺. 新型电力系统下的抽水蓄能电站成本疏导机制:综述与展望[J]. 上海交通大学学报, 2023, 57(7): 757-768. |
[7] | 李迁, 姜欣, 张钧钊, 段世杰, 金阳. 规模化储能参与电力现货市场的商业模式[J]. 上海交通大学学报, 2023, 57(12): 1543-1558. |
[8] | 胡益恺, 庄瀚洋, 王春香, 杨明. 基于主从博弈的智能车汇流场景决策方法[J]. 上海交通大学学报, 2021, 55(8): 1027-1034. |
[9] | 魏利屾, 冯宇昂, 方家琨, 艾小猛, 文劲宇. 现货市场环境下新能源并网接入对市场出清的影响[J]. 上海交通大学学报, 2021, 55(12): 1631-1639. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 462
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1620
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||