上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (4): 461-467.doi: 10.16183/j.cnki.jsjtu.2023.040
收稿日期:
2023-02-10
修回日期:
2023-03-18
接受日期:
2023-05-29
出版日期:
2024-04-28
发布日期:
2024-04-30
通讯作者:
严 波,副教授;E-mail:luxer@sjtu.edu.cn.
作者简介:
冯漾漾(1998-),硕士生,从事注塑模具温度场模拟研究.
FENG Yangyang1, DING Haoliang2, HU Pingshan1, YAN Bo1()
Received:
2023-02-10
Revised:
2023-03-18
Accepted:
2023-05-29
Online:
2024-04-28
Published:
2024-04-30
摘要:
对于注塑模具的冷却过程稳态温度场模拟,传统有限体积法(FVM)求解型腔面上等效热流时,节点温度梯度往往基于控制体积内的平均值近似计算,不一定等于边界面上的局部节点温度梯度,且控制体积内各面热流计算相互独立,可能导致控制体积内热量不守恒.为此改进FVM通过将稳态温度场热量守恒作为前提条件,基于节点控制体积的其他面热流量计算型腔面热流,修正了传统FVM.自主开发了C++有限体积法数值模拟程序,分别把传统FVM和改进FVM模拟得到的注塑模稳态温度场与商业软件结果对比,发现传统FVM能够模拟出注塑模具的温度分布情况,但存在较大计算误差;采用改进型腔面等效稳态热流算法后,计算误差显著降低,证明改进后FVM能更加准确地模拟冷却过程的稳态温度场.
中图分类号:
冯漾漾, 丁浩亮, 胡平山, 严波. 注塑模稳态温度场的有限体积法模拟[J]. 上海交通大学学报, 2024, 58(4): 461-467.
FENG Yangyang, DING Haoliang, HU Pingshan, YAN Bo. Steady-State Temperature Field Simulation of Injection Mold Based on Finite Volume Method[J]. Journal of Shanghai Jiao Tong University, 2024, 58(4): 461-467.
[1] |
KWON T H. Mold cooling system design using boundary element method[J]. Journal of Engineering for Industry, 1988, 110(4): 384-394.
doi: 10.1115/1.3187898 URL |
[2] |
QIAO H. Transient mold cooling analysis using BEM with the time-dependent fundamental solution[J]. International Communications in Heat and Mass Transfer, 2005, 32(3/4): 315-322.
doi: 10.1016/j.icheatmasstransfer.2004.07.006 URL |
[3] |
ZHOU H M, ZHANG Y, WEN J S, et al. An acceleration method for the BEM-based cooling simulation of injection molding[J]. Engineering Analysis with Boundary Elements, 2009, 33(8/9): 1022-1030.
doi: 10.1016/j.enganabound.2009.04.001 URL |
[4] |
LIN Y W, LI H M, CHEN S C, et al. 3D numerical simulation of transient temperature field for lens mold embedded with heaters[J]. International Communications in Heat and Mass Transfer, 2005, 32(9): 1221-1230.
doi: 10.1016/j.icheatmasstransfer.2004.10.025 URL |
[5] |
CHEN L, ZHOU X W, HUANG Z G, et al. Three-dimensional transient finite element cooling simulation for injection molding tools[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120(11/12): 7919-7936.
doi: 10.1007/s00170-022-09154-8 |
[6] |
DEMIRDŽIĆ I, MUZAFERIJA S. Numerical method for coupled fluid flow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology[J]. Computer Methods in Applied Mechanics and Engineering, 1995, 125(1/2/3/4): 235-255.
doi: 10.1016/0045-7825(95)00800-G URL |
[7] |
YANG S, ZHANG M Y, BI J, et al. Evaluation of the long-term thermal stability of a crushed-rock revetment embankment in pan-Arctic permafrost regions under the effect of snow drift[J]. Energy, 2023, 263: 125664.
doi: 10.1016/j.energy.2022.125664 URL |
[8] |
PRAJAPATI H, RAVOORI D, WOODS R L, et al. Measurement of anisotropic thermal conductivity and inter-layer thermal contact resistance in polymer fused deposition modeling (FDM)[J]. Additive Manufacturing, 2018, 21: 84-90.
doi: 10.1016/j.addma.2018.02.019 URL |
[9] |
SARDO L, DALDOUL W, VINCENT M, et al. Simulations of heat transfer in thermoplastic injection molds manufactured by additive techniques[J]. International Polymer Processing, 2019, 34(1): 37-46.
doi: 10.3139/217.3594 URL |
[10] |
AHMMED M S. A finite volume numerical approach for predicting heat transfer in presence of thermal contact resistance[J]. Thermal Science and Engineering Progress, 2023, 37: 101618.
doi: 10.1016/j.tsep.2022.101618 URL |
[11] |
严波, 李阳, 赵朋, 等. 基于改进有限体积法的三维注塑成型充模过程数值模拟[J]. 机械工程学报, 2015, 51(10): 25-32.
doi: 10.3901/JME.2015.10.025 |
YAN Bo, LI Yang, ZHAO Peng, et al. 3D simulation of filling stage of plastic injection molding based on improved finite volume method[J]. Journal of Mechanical Engineering, 2015, 51(10): 25-32.
doi: 10.3901/JME.2015.10.025 |
[1] | 洪蕾1,肖皓1,叶佳2,马国红1. 径向超声波辅助MIG焊电弧的数值模拟[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 330-338. |
[2] | 李树勋,沈恒云,刘斌才,胡迎港,马廷前. 高温熔盐止回阀受熔盐颗粒冲击的压力脉动响应[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 271-279. |
[3] | 张念凡, 肖龙飞, 陈刚. 海洋结构物波浪砰击的数值研究综述[J]. 上海交通大学学报, 2024, 58(2): 127-140. |
[4] | 郭同彪, 张吉, 李新亮. 压缩拐角强激波边界层干扰直接数值模拟研究[J]. 空天防御, 2024, 7(2): 29-35. |
[5] | 周东荣, 张家铭, 庄欠伟, 黄昕, 翟一欣, 朱小东, 张弛, 张子新. 曲线顶管底幕法施工对沉船扰动的CEL数值模拟[J]. 上海交通大学学报, 2023, 57(S1): 60-68. |
[6] | 陈昊, 戴孟祎, 韩兆龙, 周岱, 包艳, 涂佳黄. 带有尾缘襟翼的兆瓦级大型垂直轴风力机气动性能优化[J]. 上海交通大学学报, 2023, 57(6): 642-652. |
[7] | 刘忠波, 韩青亮, 任双双, 王彦, 房克照. 双层Boussinesq水波方程速度公式的修正[J]. 上海交通大学学报, 2023, 57(2): 177-182. |
[8] | 庞妍, 卿强, 王沙沙, 张翔宇, 龚景海. 膜结构在暴雨积水时材料模型研究[J]. 上海交通大学学报, 2023, 57(2): 213-220. |
[9] | 王肇喜, 翟师慧, 赵凡, 王者蓝, 谢夏阳. 基于虚拟激励法的多激励振动试验数值分析[J]. 空天防御, 2023, 6(2): 69-76. |
[10] | 辛鹏飞, 苗建印, 匡以武, 张红星, 王文. 液体冷却并联通道热沉中的流量分配特性[J]. 上海交通大学学报, 2023, 57(10): 1355-1366. |
[11] | 操太春, 吴刚, 孔祥逸, 于东玮, 吴琳, 张大勇. 极地海洋工程装备圆管结构的对流换热影响[J]. 上海交通大学学报, 2023, 57(1): 17-23. |
[12] | 吴怀娜, 冯东林, 刘源, 蓝淦洲, 陈仁朋. 基于门式抗浮框架的基坑开挖下卧隧道变形控制[J]. 上海交通大学学报, 2022, 56(9): 1227-1237. |
[13] | 丁恩宝, 常晟铭, 孙聪, 赵雷明, 吴浩. 半浸桨不同半径切面入水的水动力特性[J]. 上海交通大学学报, 2022, 56(9): 1188-1198. |
[14] | 刘谨豪, 严远忠, 张琪, 卞荣, 贺雷, 叶冠林. 地面堆载对既有隧道影响离心试验和数值分析[J]. 上海交通大学学报, 2022, 56(7): 886-896. |
[15] | 孙健, 彭斌, 朱兵国. 无油双涡圈空气涡旋压缩机的数值模拟及试验研究[J]. 上海交通大学学报, 2022, 56(5): 611-621. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||