上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (8): 1037-1045.doi: 10.16183/j.cnki.jsjtu.2022.004

所属专题: 《上海交通大学学报》2023年“机械与动力工程”专题

• 机械与动力工程 • 上一篇    下一篇

基于核函数-Wiener过程的轧辊非线性退化建模与剩余寿命预测

王汉禹, 陈震, 周笛, 陈兆祥, 潘尔顺()   

  1. 上海交通大学 机械与动力工程学院,上海 200240
  • 收稿日期:2022-01-05 修回日期:2022-01-31 接受日期:2022-02-16 出版日期:2023-08-28 发布日期:2023-08-31
  • 通讯作者: 潘尔顺,教授,博士生导师; E-mail:pes@sjtu.edu.cn.
  • 作者简介:王汉禹(1997-),硕士生,从事设备退化建模与寿命预测研究.
  • 基金资助:
    国家重点研发计划项目(2020YFB1711100);国家自然科学基金(72001138);国家自然科学基金(52005327);国家自然科学基金(72071127)

Nonlinear Degradation Modeling and Residual Life Prediction for Rollers Based on Kernel-based Wiener Process

WANG Hanyu, CHEN Zhen, ZHOU Di, CHEN Zhaoxiang, PAN Ershun()   

  1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2022-01-05 Revised:2022-01-31 Accepted:2022-02-16 Online:2023-08-28 Published:2023-08-31

摘要:

在轧钢生产过程中,由于磨损等原因,长时间复杂工况运行下的轧辊工作性能会呈现逐步衰退的特征.考虑轧辊工作环境具有工况复杂、随机干扰强等特点,提出基于核函数-Wiener过程(KWP)退化模型,使用Wiener过程刻画轧辊退化趋势的强随机性特征,引入核函数捕捉轧辊的非线性退化路径,推导贝叶斯框架下参数估计的解析表达式,并构造轧辊可工作转动量的健康指标,进一步预测轧辊剩余寿命(RUL).结合某钢铁公司1580热轧生产线现场数据,所构建模型拟合优度达到0.989,剩余寿命预测误差低于4.7%,相较常见机器学习算法取得了更好效果,有助于提高设备运转效率与安全性并实现视情维护.

关键词: 轧辊, 性能退化, 非线性建模, 核函数, Wiener过程, 剩余寿命预测

Abstract:

In the process of steel rolling, due to wear and other reasons, the working performance of the roll under long and complex working conditions has a gradual decline. Considering the characteristics of complex working conditions and strong random interference of the roll working environment, this paper proposed a kernel-based Wiener process (KWP) degradation model to characterize the strong randomness of the roll degradation trend by using the Wiener process, and to capture the nonlinear degradation path of the roll by using the kerna function. This paper derives the analytical expression of parameter estimation in the Bayesian framework, and constructs the health index of the roll working rotation, then predicts the remaining useful life (RUL) of the roll. In combination with the field data of 1580 hot rolling production line of an iron and steel company, the goodness of fit of the model built is 0.989, and the residual life prediction error is less than 4.7%. Compared with the common machine learning algorithm, it has achieved better results, which is helpful to improve the operating efficiency and safety of equipment and achieve maintenance as needed.

Key words: roller, performance degradation, nonlinear modeling, kernel function, Wiener process, remaining useful life (RUL) prediction

中图分类号: