上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (9): 1105-1113.doi: 10.16183/j.cnki.jsjtu.2022.120
所属专题: 《上海交通大学学报》2023年“新型电力系统与综合能源”专题
• 新型电力系统与综合能源 • 下一篇
收稿日期:
2022-04-24
修回日期:
2022-09-23
接受日期:
2022-12-13
出版日期:
2023-09-28
发布日期:
2023-09-27
通讯作者:
张建文
E-mail:icebergzjw@sjtu.edu.cn
作者简介:
王晗(1982-),博士,助理研究员,从事新能源电力变换控制技术研究.
基金资助:
WANG Han, ZHANG Jianwen(), SHI Gang, ZHU Miao, CAI Xu
Received:
2022-04-24
Revised:
2022-09-23
Accepted:
2022-12-13
Online:
2023-09-28
Published:
2023-09-27
Contact:
ZHANG Jianwen
E-mail:icebergzjw@sjtu.edu.cn
摘要:
基于能量函数的无源性控制(PBC)被广泛研究并用于并网变换器以获得更好的控制性能.然而,传统的PBC方法依赖并网变换器的精确数学模型,且已有研究较少考虑数字控制的延迟效应以及电容性电网或复杂弱电网下电网阻抗的不确定性对系统稳定控制的影响.鉴于此,针对三相LCL并网逆变器提出一种改进PBC方法以实现导纳重塑,通过增加电容电流前馈将系统无源区域扩展到奈奎斯特频率,在电网阻抗宽范围变化下实现LCL谐振频率的有源阻尼控制,并提出改进PBC控制参数设计方法.在3 kW并网逆变器样机平台上开展仿真和实验研究,验证了理论分析的正确性.
中图分类号:
王晗, 张建文, 施刚, 朱淼, 蔡旭. 基于改进无源性控制的三相LCL并网逆变器输出导纳重塑方法[J]. 上海交通大学学报, 2023, 57(9): 1105-1113.
WANG Han, ZHANG Jianwen, SHI Gang, ZHU Miao, CAI Xu. An Admittance Reshaping Strategy of Three-Phase LCL Grid-Connected Inverter Based on Modified Passive Control[J]. Journal of Shanghai Jiao Tong University, 2023, 57(9): 1105-1113.
[1] |
BLAABJERG F, CHEN Z, KJAER S B. Power electronics as efficient interface in dispersed power generation systems[J]. IEEE Transactions on Power Electronics, 2004, 19(5): 1184-1194.
doi: 10.1109/TPEL.2004.833453 URL |
[2] |
PAN D H, RUAN X B, BAO C L, et al. Capacitor-current-feedback active damping with reduced computation delay for improving robustness of LCL-type grid-connected inverter[J]. IEEE Transactions on Power Electronics, 2013, 29(7): 3414-3427.
doi: 10.1109/TPEL.2013.2279206 URL |
[3] |
PEÑA-ALZOLA R, LISERRE M, BLAABJERG F, et al. Analysis of the passive damping losses in LCL-filter-based grid converters[J]. IEEE Transactions on Power Electronics, 2013, 28(6): 2642-2646.
doi: 10.1109/TPEL.2012.2222931 URL |
[4] | 张计科, 王美臣. LCL型光伏并网逆变器无源阻尼控制策略[J]. 电源技术, 2020, 44(9): 1334-1337. |
ZHANG Jike, WANG Meichen. Passive damping control strategy of LCL-type PV grid-connected inverter[J]. Chinese Journal of Power Sources, 2020, 44(9): 1334-1337. | |
[5] |
KOUCHAKI A, NYMAND M. Analytical design of passive LCL filter for three-phase two-level power factor correction rectifiers[J]. IEEE Transactions on Power Electronics, 2018, 33(4): 3012-3022.
doi: 10.1109/TPEL.2017.2705288 URL |
[6] | 刘鸿鹏, 边新新, 张伟, 等. 扩大有效阻尼区的改进型电容电流反馈有源阻尼策略[J]. 高电压技术, 2022, 48(1): 114-124. |
LIU Hongpeng, BIAN Xinxin, ZHANG Wei, et al. Novel capacitor current feedback active damping strategy for extending the range of equivalent virtual damping[J]. High Voltage Engineering, 2022, 48(1): 114-124. | |
[7] | 曹子恒, 肖先勇, 马俊鹏, 等. 提高LCL型并网逆变器鲁棒性的改进型电容电流反馈有源阻尼策略[J]. 高电压技术, 2020, 46(11): 3781-3790. |
CAO Ziheng, XIAO Xianyong, MA Junpeng, et al. Novel capacitor current feedback active damping strategy for enhancing robustness of LCL-type grid-connected inverters[J]. High Voltage Engineering, 2020, 46(11): 3781-3790. | |
[8] |
HE Y Y, WANG X H, RUAN X B, et al. Capacitor-current proportional-integral positive feedback active damping for LCL-type grid-connected inverter to achieve high robustness against grid impedance variation[J]. IEEE Transactions on Power Electronics, 2019, 34(12): 12423-12436.
doi: 10.1109/TPEL.63 URL |
[9] |
HUANG M, WANG X F, LOH P C, et al. Active damping of LLCL-filter resonance based on LC-trap voltage or current feedback[J]. IEEE Transactions on Power Electronics, 2016, 31(3): 2337-2346.
doi: 10.1109/TPEL.2015.2433253 URL |
[10] |
HE Y Y, WANG X H, RUAN X B, et al. Hybrid active damping combining capacitor current feedback and point of common coupling voltage feedforward for LCL-type grid-connected inverter[J]. IEEE Transactions on Power Electronics, 2021, 36(2): 2373-2383.
doi: 10.1109/TPEL.63 URL |
[11] |
ZOU C Y, LIU B Y, DUAN S X, et al. Influence of delay on system stability and delay optimization of grid-connected inverters with LCL filter[J]. IEEE Transactions on Industrial Informatics, 2014, 10(3): 1775-1784.
doi: 10.1109/TII.2014.2324492 URL |
[12] |
PARKER S G, MCGRATH B P, HOLMES D G. Regions of active damping control for LCL filters[J]. IEEE Transactions on Industry Applications, 2014, 50(1): 424-432.
doi: 10.1109/TIA.2013.2266892 URL |
[13] |
WANG J G, YAN J D, JIANG L, et al. Delay-dependent stability of single-loop controlled grid-connected inverters with LCL filters[J]. IEEE Transactions on Power Electronics, 2016, 31(1): 743-757.
doi: 10.1109/TPEL.2015.2401612 URL |
[14] |
KOMURCUGIL H, ALTIN N, OZDEMIR S, et al. Lyapunov-function and proportional-resonant-based control strategy for single-phase grid-connected VSI with LCL filter[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5): 2838-2849.
doi: 10.1109/TIE.2015.2510984 URL |
[15] |
WANG J H, MU X B, LI Q K. Study of passivity-based decoupling control of T-NPC PV grid-connected inverter[J]. IEEE Transactions on Industrial Electronics, 2017, 64(9): 7542-7551.
doi: 10.1109/TIE.2017.2677341 URL |
[16] |
ZHAO J P, WU W M, SHUAI Z K, et al. Robust control parameters design of PBC controller for LCL-filtered grid-tied inverter[J]. IEEE Transactions on Power Electronics, 2020, 35(8): 8102-8115.
doi: 10.1109/TPEL.63 URL |
[17] |
AWAL M A, YU W S, HUSAIN I. Passivity-based predictive-resonant current control for resonance damping in LCL-equipped VSCs[J]. IEEE Transactions on Industry Applications, 2020, 56(2): 1702-1713.
doi: 10.1109/TIA.28 URL |
[18] | JUDEWICZ M G, GONZÁLEZ S A, FISCHER J R, et al. Inverter-side current control of grid-connected voltage source inverters with LCL filter based on generalized predictive control[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2018, 6(4): 1732-1743. |
[19] |
HAO X, YANG X, LIU T, et al. A sliding-mode controller with multiresonant sliding surface for single-phase grid-connected VSI with an LCL filter[J]. IEEE Transactions on Power Electronics, 2013, 28(5): 2259-2268.
doi: 10.1109/TPEL.2012.2218133 URL |
[20] | 柯顺超, 朱淼, 陈阳, 等. 基于MMC-UPFC无源性滑模变结构控制的电网不平衡治理策略[J]. 高电压技术, 2020, 46(3): 1078-1086. |
KE Shunchao, ZHU Miao, CHEN Yang, et al. Treatment strategy of unbalanced grid voltage conditions based on MMC-UPFC passive sliding-mode variable structure control[J]. High Voltage Engineering, 2020, 46(3): 1078-1086. | |
[21] | ORTEGA R, LORÍA A, NICKLASSON P J, et al. Passivity-based control of Euler-Lagrange systems: Mechanical, electrical and electromechanical applications[M]. London: Springer-Verlag, 1998. |
[22] |
LIU Z G, GENG Z Z, HU X X. An approach to suppress low frequency oscillation in the traction network of high-speed railway using passivity-based control[J]. IEEE Transactions on Power Systems, 2018, 33(4): 3909-3918.
doi: 10.1109/TPWRS.59 URL |
[23] |
WANG X F, BLAABJERG F, LOH P C. Passivity-based stability analysis and damping injection for multiparalleled VSCs with LCL filters[J]. IEEE Transactions on Power Electronics, 2017, 32(11): 8922-8935.
doi: 10.1109/TPEL.2017.2651948 URL |
[24] |
LIU Y X, XU J Z, SHUAI Z K, et al. Passivity-based decoupling control strategy of single-phase LCL-type VSRs for harmonics suppression in railway power systems[J]. International Journal of Electrical Power & Energy Systems, 2020, 117: 105698.
doi: 10.1016/j.ijepes.2019.105698 URL |
[25] |
LAI J M, YIN X G, ZHANG Z, et al. System modeling and cascaded passivity based control for distribution transformer integrated with static synchronous compensator[J]. International Journal of Electrical Power & Energy Systems, 2019, 113: 1035-1046.
doi: 10.1016/j.ijepes.2019.06.015 URL |
[26] |
XIE C, LI K, ZOU J X, et al. Passivity-based stabilization of LCL-type grid-connected inverters via a general admittance model[J]. IEEE Transactions on Power Electronics, 2020, 35(6): 6636-6648.
doi: 10.1109/TPEL.63 URL |
[27] | 张庆海, 罗安, 陈燕东, 等. 并联逆变器输出阻抗分析及电压控制策略[J]. 电工技术学报, 2014, 29(6): 98-105. |
ZHANG Qinghai, LUO An, CHEN Yandong, et al. Analysis of output impedance for parallel inverters and voltage control strategy[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 98-105. | |
[28] |
HARNEFORS L, ZHANG L, BONGIOMO M. Frequency-domain passivity-based current controller design[J]. IET Power Electronics, 2008, 1(4): 455-465.
doi: 10.1049/iet-pel:20070286 URL |
[1] | 邓旭a, 冯正平a, b, 何晨璐a, 崔振华a. 水下无人平台载荷释放过程中的姿态镇定控制[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(5): 766-772. |
[2] | 张啸天1,何德峰1,廖飞2. 复杂环境及约束下舰载机自动着舰迭代模型预测控制[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 712-724. |
[3] | 王晓静1,刘晓华2,高荣2. 具有状态时滞的奇异随机系统基于滚动时域控制的镇定[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 436-449. |
[4] | 吴斌峰. 海洋石油平台智能化技术在生产稳定性与效率提升中的应用研究[J]. 海洋工程装备与技术, 2024, 11(2): 29-33. |
[5] | 葛琛琛, 陈俊儒, 徐森, 常喜强, 毛善祥, 朱荣伍. 适用于频率和电压动态分析的构网型新能源场站聚合建模[J]. 上海交通大学学报, 2024, 58(10): 1544-1553. |
[6] | 于淼, 胡敬轩, 张寿志, 魏静静, 孙建群, 吴屹潇. 基于PMU梯度动态偏差的新型电力系统快速稳定性[J]. 上海交通大学学报, 2024, 58(1): 40-49. |
[7] | 刘新宇, 王森, 曾龙, 原绍恒, 郝正航, 逯芯妍. 双馈风电场抑制电网低频振荡的自适应附加控制策略[J]. 上海交通大学学报, 2023, 57(9): 1156-1164. |
[8] | 戴治恒, 张孟喜, 魏辉, 顾婕, 张晓清. 钢管桩-注浆加固盾构换刀区稳定性分析[J]. 上海交通大学学报, 2023, 57(6): 690-699. |
[9] | 罗统, 张民, 梁承宇. 多无人机协同目标跟踪制导律设计[J]. 空天防御, 2023, 6(3): 113-118. |
[10] | 辛鹏飞, 苗建印, 匡以武, 张红星, 王文. 液体冷却并联通道热沉中的流量分配特性[J]. 上海交通大学学报, 2023, 57(10): 1355-1366. |
[11] | 朱城昊, 王晗, 孙国歧, 魏晓宾, 王富文, 蔡旭. 一种并网逆变器直流电容容值辨识方法[J]. 上海交通大学学报, 2022, 56(6): 693-700. |
[12] | 万慧, 齐晓慧, 李杰. 基于线性矩阵不等式的线性/非线性切换自抗扰控制系统的稳定性分析[J]. 上海交通大学学报, 2022, 56(11): 1491-1501. |
[13] | 郭志远, 虞培祥, 欧阳华. 基于大涡模拟的圆柱绕流剪切层不稳定性[J]. 上海交通大学学报, 2021, 55(8): 924-933. |
[14] | 鄢雄伟, 杜波, 李绍隆, 张璐华, 李克勇. 推力变化对旋转导弹动稳定性的影响分析[J]. 空天防御, 2021, 4(4): 57-60. |
[15] | 王宇, 余岳峰, 朱小磊, 张忠孝. 基于光流法和深度学习的燃气火焰稳定性[J]. 上海交通大学学报, 2021, 55(4): 462-470. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||