上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (2): 232-241.doi: 10.16183/j.cnki.jsjtu.2022.322
程相伟1, 张大旭1(), 杜永龙1, 郭洪宝2, 洪智亮2
收稿日期:
2022-08-24
修回日期:
2022-10-10
接受日期:
2022-10-18
出版日期:
2024-02-28
发布日期:
2024-03-04
通讯作者:
张大旭,教授,博士生导师,电话(Tel.): 021-34207985; E-mail:daxu.zhang@sjtu.edu.cn.
作者简介:
程相伟(1998-), 硕士生, 从事陶瓷基复合材料力学研究.
基金资助:
CHENG Xiangwei1, ZHANG Daxu1(), DU Yonglong1, GUO Hongbao2, HONG Zhiliang2
Received:
2022-08-24
Revised:
2022-10-10
Accepted:
2022-10-18
Online:
2024-02-28
Published:
2024-03-04
摘要:
为揭示陶瓷基复合材料的损伤演化及失效机理,开展了平纹SiCf/SiC复合材料X射线CT原位压缩试验,得到了材料加载过程中和破坏后的CT原位图像数据;采用数字体积相关(DVC)技术获得了材料的位移场和应变场,利用图像处理软件建立复合材料内部三维可视化模型,借助深度学习算法获得纤维束劈裂等损伤的空间分布,进行了压缩损伤演化定性分析以及定量分析.结果表明:在单向压缩过程中,材料在厚度方向出现较大鼓出变形,在宽度方向则发生较小的收缩;厚度方向鼓出变形是引起材料压缩损伤的主要原因.载荷较大时出现表层基体脱落、纤维束劈裂、分层等损伤;纤维束压缩弯折导致材料压缩失效,断口处出现明显V形剪切带.平纹 SiCf/SiC 的压缩损伤演化分析表明,DVC技术和基于深度学习的图像分割方法可以有效地揭示陶瓷基复合材料压缩损伤演化机理.
中图分类号:
程相伟, 张大旭, 杜永龙, 郭洪宝, 洪智亮. 基于X射线CT原位试验的平纹SiCf/SiC压缩损伤演化机理[J]. 上海交通大学学报, 2024, 58(2): 232-241.
CHENG Xiangwei, ZHANG Daxu, DU Yonglong, GUO Hongbao, HONG Zhiliang. In-Situ X-Ray CT Characterization of Damage Mechanism of Plain Weave SiCf/SiC Composites Under Compression[J]. Journal of Shanghai Jiao Tong University, 2024, 58(2): 232-241.
[1] | 何新波, 杨辉, 张长瑞, 等. 连续纤维增强陶瓷基复合材料概述[J]. 材料科学与工程, 2002, 20(2): 273-278. |
HE Xinbo, YANG Hui, ZHANG Changrui, et al. Review of continuous fiber reinforced ceramic matrix composites[J]. Materials Science & Engineering, 2002, 20(2): 273-278. | |
[2] |
WAN F, LIU R J, WANG Y F, et al. In situ observation of compression damage in a 3D needled-punched carbon fiber-silicon carbide ceramic matrix composite[J]. Composite Structures, 2019, 210: 189-201.
doi: 10.1016/j.compstruct.2018.11.041 URL |
[3] |
WAN F, ZHAO S X, LIU R J, et al. In-situ observation of compression damage in a 3D braided carbon fiber reinforced carbon and silicon carbide (C/C-SiC) ceramic composite[J]. Microscopy and Microanalysis, 2018, 24(3): 227-237.
doi: 10.1017/S1431927618000351 URL |
[4] |
CHATEAU C, GELEBART L, BORNERT M, et al. In situ X-ray microtomography characterization of damage in SiCf/SiC minicomposites[J]. Composites Science and Technology, 2011, 71(6): 916-924.
doi: 10.1016/j.compscitech.2011.02.008 URL |
[5] |
BALE H A, HABOUB A, MACDOWELL A A, et al. Real-time quantitative imaging of failure events in materials under load at temperatures above 1, 600 ℃[J]. Nature Materials, 2013, 12(1): 40-46.
doi: 10.1038/nmat3497 |
[6] |
WAN F, LIU R J, WANG Y F, et al. Damage development during flexural loading of a 5-directional braided C/C-SiC composite, characterized by X-ray tomography and digital volume correlation[J]. Ceramics International. 2019, 45(5): 5601-5612.
doi: 10.1016/j.ceramint.2018.12.020 URL |
[7] |
SAUCEDO-MORA L, LOWE T, ZHAO S, et al. In situ observation of mechanical damage within a SiC-SiC ceramic matrix composite[J]. Journal of Nuclear Materials. 2016, 481: 13-23.
doi: 10.1016/j.jnucmat.2016.09.007 URL |
[8] |
ZHANG D, LIU Y, LIU H, et al. Characterisation of damage evolution in plain weave SiC/SiC composites using in situ X-ray micro-computed tomography[J]. Composite Structures, 2021, 275(8): 114447.
doi: 10.1016/j.compstruct.2021.114447 URL |
[9] | 刘海龙, 张大旭, 祁荷音, 等. 基于X射线CT原位试验的平纹SiC/SiC复合材料拉伸损伤演化[J]. 上海交通大学学报, 2020, 54(10): 1074-1083. |
LIU Hailong, ZHANG Daxu, QI Heyin, et al. Tensile damage evolution of plain weave SiC/SiC composites based on in-situ X-ray CT tests[J]. Journal of Shanghai Jiao Tong University, 2020, 54(10): 1074-1083. | |
[10] | 阙权庆. C/SiC复合材料螺栓连接结构热力耦合及拉伸强度分析[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
QUE Quanqing, The thermo-structural and tensile strength analysis of C/SiC composite bolted joints[D]. Harbin: Harbin Institute of Technology, 2018. | |
[11] | 熊鑫. C/SiC复合材料弹簧的制备及其性能研究[D]. 长沙: 国防科学技术大学, 2011. |
XIONG Xin. Preparation and properties of C/SiC composite spring[D]. Changsha: National University of Defense Technology, 2011. | |
[12] |
BADRAN A, MARSHALL D, LEGAULT Z, et al. Automated segmentation of computed tomography images of fiber-reinforced composites by deep learning[J]. Journal of Materials Science, 2020, 55(34): 1-17.
doi: 10.1007/s10853-019-03876-z |
[13] | 杜永龙, 张毅, 王龙, 等. 基于深度学习的平纹Cf/SiC复合材料原位拉伸损伤演化与断裂分析[J]. 硅酸盐通报, 2022, 41(1): 249-257. |
DU Yonglong, ZHANG Yi, WANG Long, et al. In-situ tensile damage evolution and fracture analysis of plain weave Cf/SiC composites based on deep learning[J]. Bulletin of The Chinese Ceramic Society, 2022, 41(1): 249-257. | |
[14] | 冯宇琦, 张毅, 张大旭, 等. 基于深度学习的2.5D陶瓷基复合材料损伤识别与评估[J]. 硅酸盐学报, 2021, 49(8): 1765-1775. |
FENG Yuqi, ZHANG Yi, ZHANG Daxu, et al. Deep learning-based damage identification and evaluation of 2.5D ceramic matrix composites[J]. Journal of the Chinese Ceramic Society, 2021, 49(8): 1765-1775. | |
[15] |
FORSBERG F, MOOSER R, ARNOLD M, et al. 3D micro-scale deformations of wood in bending: Synchrotron radiation mu CT data analyzed with digital volume correlation[J]. Journal of Structural Biology, 2008, 164(3): 255-262.
doi: 10.1016/j.jsb.2008.08.004 URL |
[16] | 万帆. 气相渗硅制备C/C-SiC复合材料的工艺、结构及力学损伤机理研究[D]. 长沙: 国防科技大学, 2019. |
WAN Fan. Investigation on the fabrication technology microstructure and mechanical damage mechanism of C/C-SiC composites fabricated by gaseous silicon infiltration[D]. Changsha: National University of Defense Technology, 2019. |
[1] | 沈傲1, 2,胡冀苏2, 3,金鹏飞4,周志勇2,钱旭升2, 3,郑毅2,包婕4,王希明4,戴亚康1, 2. 基于课程学习训练的聚合注意力网络Multi-SEANet用于MRI图像的格里森级别组无创预测[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 109-119. |
[2] | 顾闻,徐奕. 基于对抗学习和迭代优化的视网膜血管分割[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 73-80. |
[3] | 林照晨, 张欣然, 刘紫阳, 贺风华, 欧阳磊. 基于深度学习的高超声速飞行器运动行为识别[J]. 空天防御, 2024, 7(1): 48-55. |
[4] | 薛永波a,刘 钊b,李泽阳a,朱 平a. 基于改进分水岭算法和U-net神经网络模型的复合材料CT图像分割方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 783-792. |
[5] | 曾志贤,曹建军,翁年凤,袁震,余旭. 基于细粒度联合注意力机制的图像-文本跨模态实体分辨[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 728-737. |
[6] | 李擎, 皇甫玉彬, 李江昀, 杨志方, 陈鹏, 王子涵. UConvTrans:全局和局部信息交互的双分支心脏图像分割[J]. 上海交通大学学报, 2023, 57(5): 570-581. |
[7] | . 基于锥型体素建模和单目相机的鸟瞰图语义分割和体素语义分割[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 100-113. |
[8] | 王兵, 皮刚, 陈文成, 谢海峰, 施祥玲. 基于深度学习的柔性太阳翼琴铰表面缺陷检测方法[J]. 空天防御, 2023, 6(1): 96-101. |
[9] | 曾国治, 魏子清, 岳宝, 丁云霄, 郑春元, 翟晓强. 基于CNN-RNN组合模型的办公建筑能耗预测[J]. 上海交通大学学报, 2022, 56(9): 1256-1261. |
[10] | 吴庶宸, 戚宗锋, 李建勋. 基于深度学习的智能全局灵敏度分析[J]. 上海交通大学学报, 2022, 56(7): 840-849. |
[11] | 唐泽宇, 邹小虎, 李鹏飞, 张伟, 余佳奇, 赵耀东. 基于迁移学习的小样本OFDM目标增强识别方法[J]. 上海交通大学学报, 2022, 56(12): 1666-1674. |
[12] | 吕超凡, 言颖杰, 林力, 柴岗, 鲍劲松. 基于点云语义分割算法的下颌角截骨面设计[J]. 上海交通大学学报, 2022, 56(11): 1509-1517. |
[13] | 金丽洁, 武亚涛. 基于双CNN的雷达信号调制类型识别方法[J]. 空天防御, 2022, 5(1): 66-70. |
[14] | 陶海红, 闫莹菲. 一种基于GA-CNN的网络化雷达节点遴选算法[J]. 空天防御, 2022, 5(1): 1-5. |
[15] | 王兴志, 翟海保, 严亚勤, 吴庆曦. 基于数字孪生和深度学习的新一代调控系统预调度方法[J]. 上海交通大学学报, 2021, 55(S2): 37-41. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||