上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (2): 232-241.doi: 10.16183/j.cnki.jsjtu.2022.322
程相伟1, 张大旭1(), 杜永龙1, 郭洪宝2, 洪智亮2
收稿日期:
2022-08-24
修回日期:
2022-10-10
接受日期:
2022-10-18
出版日期:
2024-02-28
发布日期:
2024-03-04
通讯作者:
张大旭,教授,博士生导师,电话(Tel.): 021-34207985; E-mail:daxu.zhang@sjtu.edu.cn.
作者简介:
程相伟(1998-), 硕士生, 从事陶瓷基复合材料力学研究.
基金资助:
CHENG Xiangwei1, ZHANG Daxu1(), DU Yonglong1, GUO Hongbao2, HONG Zhiliang2
Received:
2022-08-24
Revised:
2022-10-10
Accepted:
2022-10-18
Online:
2024-02-28
Published:
2024-03-04
摘要:
为揭示陶瓷基复合材料的损伤演化及失效机理,开展了平纹SiCf/SiC复合材料X射线CT原位压缩试验,得到了材料加载过程中和破坏后的CT原位图像数据;采用数字体积相关(DVC)技术获得了材料的位移场和应变场,利用图像处理软件建立复合材料内部三维可视化模型,借助深度学习算法获得纤维束劈裂等损伤的空间分布,进行了压缩损伤演化定性分析以及定量分析.结果表明:在单向压缩过程中,材料在厚度方向出现较大鼓出变形,在宽度方向则发生较小的收缩;厚度方向鼓出变形是引起材料压缩损伤的主要原因.载荷较大时出现表层基体脱落、纤维束劈裂、分层等损伤;纤维束压缩弯折导致材料压缩失效,断口处出现明显V形剪切带.平纹 SiCf/SiC 的压缩损伤演化分析表明,DVC技术和基于深度学习的图像分割方法可以有效地揭示陶瓷基复合材料压缩损伤演化机理.
中图分类号:
程相伟, 张大旭, 杜永龙, 郭洪宝, 洪智亮. 基于X射线CT原位试验的平纹SiCf/SiC压缩损伤演化机理[J]. 上海交通大学学报, 2024, 58(2): 232-241.
CHENG Xiangwei, ZHANG Daxu, DU Yonglong, GUO Hongbao, HONG Zhiliang. In-Situ X-Ray CT Characterization of Damage Mechanism of Plain Weave SiCf/SiC Composites Under Compression[J]. Journal of Shanghai Jiao Tong University, 2024, 58(2): 232-241.
[1] | 何新波, 杨辉, 张长瑞, 等. 连续纤维增强陶瓷基复合材料概述[J]. 材料科学与工程, 2002, 20(2): 273-278. |
HE Xinbo, YANG Hui, ZHANG Changrui, et al. Review of continuous fiber reinforced ceramic matrix composites[J]. Materials Science & Engineering, 2002, 20(2): 273-278. | |
[2] |
WAN F, LIU R J, WANG Y F, et al. In situ observation of compression damage in a 3D needled-punched carbon fiber-silicon carbide ceramic matrix composite[J]. Composite Structures, 2019, 210: 189-201.
doi: 10.1016/j.compstruct.2018.11.041 URL |
[3] |
WAN F, ZHAO S X, LIU R J, et al. In-situ observation of compression damage in a 3D braided carbon fiber reinforced carbon and silicon carbide (C/C-SiC) ceramic composite[J]. Microscopy and Microanalysis, 2018, 24(3): 227-237.
doi: 10.1017/S1431927618000351 URL |
[4] |
CHATEAU C, GELEBART L, BORNERT M, et al. In situ X-ray microtomography characterization of damage in SiCf/SiC minicomposites[J]. Composites Science and Technology, 2011, 71(6): 916-924.
doi: 10.1016/j.compscitech.2011.02.008 URL |
[5] |
BALE H A, HABOUB A, MACDOWELL A A, et al. Real-time quantitative imaging of failure events in materials under load at temperatures above 1, 600 ℃[J]. Nature Materials, 2013, 12(1): 40-46.
doi: 10.1038/nmat3497 |
[6] |
WAN F, LIU R J, WANG Y F, et al. Damage development during flexural loading of a 5-directional braided C/C-SiC composite, characterized by X-ray tomography and digital volume correlation[J]. Ceramics International. 2019, 45(5): 5601-5612.
doi: 10.1016/j.ceramint.2018.12.020 URL |
[7] |
SAUCEDO-MORA L, LOWE T, ZHAO S, et al. In situ observation of mechanical damage within a SiC-SiC ceramic matrix composite[J]. Journal of Nuclear Materials. 2016, 481: 13-23.
doi: 10.1016/j.jnucmat.2016.09.007 URL |
[8] |
ZHANG D, LIU Y, LIU H, et al. Characterisation of damage evolution in plain weave SiC/SiC composites using in situ X-ray micro-computed tomography[J]. Composite Structures, 2021, 275(8): 114447.
doi: 10.1016/j.compstruct.2021.114447 URL |
[9] | 刘海龙, 张大旭, 祁荷音, 等. 基于X射线CT原位试验的平纹SiC/SiC复合材料拉伸损伤演化[J]. 上海交通大学学报, 2020, 54(10): 1074-1083. |
LIU Hailong, ZHANG Daxu, QI Heyin, et al. Tensile damage evolution of plain weave SiC/SiC composites based on in-situ X-ray CT tests[J]. Journal of Shanghai Jiao Tong University, 2020, 54(10): 1074-1083. | |
[10] | 阙权庆. C/SiC复合材料螺栓连接结构热力耦合及拉伸强度分析[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
QUE Quanqing, The thermo-structural and tensile strength analysis of C/SiC composite bolted joints[D]. Harbin: Harbin Institute of Technology, 2018. | |
[11] | 熊鑫. C/SiC复合材料弹簧的制备及其性能研究[D]. 长沙: 国防科学技术大学, 2011. |
XIONG Xin. Preparation and properties of C/SiC composite spring[D]. Changsha: National University of Defense Technology, 2011. | |
[12] |
BADRAN A, MARSHALL D, LEGAULT Z, et al. Automated segmentation of computed tomography images of fiber-reinforced composites by deep learning[J]. Journal of Materials Science, 2020, 55(34): 1-17.
doi: 10.1007/s10853-019-03876-z |
[13] | 杜永龙, 张毅, 王龙, 等. 基于深度学习的平纹Cf/SiC复合材料原位拉伸损伤演化与断裂分析[J]. 硅酸盐通报, 2022, 41(1): 249-257. |
DU Yonglong, ZHANG Yi, WANG Long, et al. In-situ tensile damage evolution and fracture analysis of plain weave Cf/SiC composites based on deep learning[J]. Bulletin of The Chinese Ceramic Society, 2022, 41(1): 249-257. | |
[14] | 冯宇琦, 张毅, 张大旭, 等. 基于深度学习的2.5D陶瓷基复合材料损伤识别与评估[J]. 硅酸盐学报, 2021, 49(8): 1765-1775. |
FENG Yuqi, ZHANG Yi, ZHANG Daxu, et al. Deep learning-based damage identification and evaluation of 2.5D ceramic matrix composites[J]. Journal of the Chinese Ceramic Society, 2021, 49(8): 1765-1775. | |
[15] |
FORSBERG F, MOOSER R, ARNOLD M, et al. 3D micro-scale deformations of wood in bending: Synchrotron radiation mu CT data analyzed with digital volume correlation[J]. Journal of Structural Biology, 2008, 164(3): 255-262.
doi: 10.1016/j.jsb.2008.08.004 URL |
[16] | 万帆. 气相渗硅制备C/C-SiC复合材料的工艺、结构及力学损伤机理研究[D]. 长沙: 国防科技大学, 2019. |
WAN Fan. Investigation on the fabrication technology microstructure and mechanical damage mechanism of C/C-SiC composites fabricated by gaseous silicon infiltration[D]. Changsha: National University of Defense Technology, 2019. |
[1] | 梁煜婉, 肖朝昀, 李明广, 孟江山, 周建烽, 黄山景, 朱浩杰. 基于长短时记忆的真空预压地基沉降预测[J]. 上海交通大学学报, 2025, 59(4): 525-532. |
[2] | . 迁移学习和注意机制融合用于CT图像COVID-19病灶分割的计算机辅助诊断[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 566-581. |
[3] | . 基于RGB-D图像的机器人抓取检测高效全卷积网络和优化方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 399-416. |
[4] | . 基于双流自编码器的无监督动作识别[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 330-336. |
[5] | 于泓, 刘宜罡, 李颖, 乔金鑫, 简方恒. 寄生参数对SiC MOSFET开关特性的影响分析及建模[J]. 空天防御, 2025, 8(2): 103-111. |
[6] | 孙佳哲, 邹鹰. 基于深度学习的码头电子围栏识别应用[J]. 海洋工程装备与技术, 2025, 12(1): 87-93. |
[7] | Sahaya Anselin Nisha1, NARMADHA R.1, AMIRTHALAKSHMI T. M.2, BALAMURUGAN V.1, VEDANARAYANAN V.1. LOBO优化的深度卷积神经网络用于脑肿瘤分类[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 107-114. |
[8] | 徐旺旺1,2,许良凤1,2,刘宁徽3,律娜3. 基于多注意力卷积神经网络的乳腺癌组织学图像诊断[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 91-106. |
[9] | 王于波, 郝玲, 徐飞, 陈文彬, 郑利斌, 陈磊, 闵勇. 分布式光伏集群发电功率波动模式识别与超短期概率预测[J]. 上海交通大学学报, 2024, 58(9): 1334-1343. |
[10] | 李明爱1, 2, 魏丽娜1. 基于朴素卷积神经网络和线性插值的运动想像分类[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 958-966. |
[11] | 崔闪, 潘俊杨, 王伟, 郭叶, 许江涛. 基于深度学习的防空反导拦截决策研究[J]. 空天防御, 2024, 7(5): 54-64. |
[12] | 刘婧, 郭晓雷, 张欣海, 毛靖军, 吕瑞恒. 空面导弹轻量化空中斜框目标检测算法[J]. 空天防御, 2024, 7(4): 106-113. |
[13] | 张彦军1,4,5,6,7, 王碧云2,3 , 蔡云泽1,4,5,6,7. 基于注意力的多通道网络红外弱小目标检测[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 414-427. |
[14] | 林照晨, 张欣然, 刘紫阳, 贺风华, 欧阳磊. 基于深度学习的高超声速飞行器运动行为识别[J]. 空天防御, 2024, 7(1): 48-55. |
[15] | 沈傲1, 2,胡冀苏2, 3,金鹏飞4,周志勇2,钱旭升2, 3,郑毅2,包婕4,王希明4,戴亚康1, 2. 基于课程学习训练的聚合注意力网络Multi-SEANet用于MRI图像的格里森级别组无创预测[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 109-119. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 345
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1415
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||