上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (12): 1675-1687.doi: 10.16183/j.cnki.jsjtu.2021.201
所属专题: 《上海交通大学学报》2022年“电子信息与电气工程”专题
刘昊1,2, 孙世峰1, 李晓佳1, 郝敬宾1, 杨海峰1()
收稿日期:
2021-06-07
出版日期:
2022-12-28
发布日期:
2023-01-05
通讯作者:
杨海峰
E-mail:hfyang@cumt.edu.cn.
作者简介:
刘 昊(1985-),男,江苏省徐州市人,博士,副教授,从事激光熔覆技术及数值仿真方面的研究.
基金资助:
LIU Hao1,2, SUN Shifeng1, LI Xiaojia1, HAO Jingbin1, YANG Haifeng1()
Received:
2021-06-07
Online:
2022-12-28
Published:
2023-01-05
Contact:
YANG Haifeng
E-mail:hfyang@cumt.edu.cn.
摘要:
45钢存在耐磨性能及耐蚀性能较差等问题.采用激光熔覆技术在45钢表面制备了CoCrFeMnNiMox(x=0.00, 0.25, 0.50, 0.75, 1.00)高熵合金涂层,研究了Mo元素对高熵合金涂层的微观组织和性能的影响.结果表明:CoCrFeMnNiMox高熵合金涂层由单一的面心立方(FCC)固溶体组成.含Mo元素涂层微观结构为典型的枝晶和枝晶间结构,这是熔池在凝固过程中的非均质形核现象导致的.涂层的显微硬度随x值的增大而升高,其中Mo1.00涂层硬度最高为2.391 GPa,定量计算表明固溶强化是显微硬度提升的主要原因.随着Mo质量分数的升高,磨损机制从黏着磨损演变为磨粒磨损和氧化磨损.其中,Mo1.00涂层具有最低的体积磨损率(0.68×10-4 mm3/(N·m)).根据点缺陷模型理论分析了涂层钝化对耐蚀性能的影响.添加Mo元素提升了涂层钝化行为的脱水速率,使得氧化物层变厚,进而提升了涂层的耐蚀性.涂层的腐蚀机制为晶间腐蚀,Mo0.75涂层具有最小的自腐蚀电流密度和最正的自腐蚀电位,分别为3.69×10-6 A/cm2和 -0.432 V.
中图分类号:
刘昊, 孙世峰, 李晓佳, 郝敬宾, 杨海峰. 激光熔覆CoCrFeMnNiMox高熵合金涂层的微观组织及性能[J]. 上海交通大学学报, 2022, 56(12): 1675-1687.
LIU Hao, SUN Shifeng, LI Xiaojia, HAO Jingbin, YANG Haifeng. Microstructure and Properties of CoCrFeMnNiMox High-Entropy Alloy Coating by Laser Cladding[J]. Journal of Shanghai Jiao Tong University, 2022, 56(12): 1675-1687.
表2
CoCrFeMnNiMox高熵合金涂层的元素质量分数
元素 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Cr | 7.71 | 8.67 | 6.82 | 10.59 | 6.56 | 7.88 | 5.91 | 6.29 |
Mn | 7.36 | 9.97 | 7.12 | 8.39 | 6.37 | 7.69 | 5.07 | 6.85 |
Fe | 60.94 | 53.13 | 63.17 | 43.85 | 60.37 | 52.98 | 62.44 | 59.71 |
Co | 9.98 | 9.24 | 9.00 | 6.48 | 9.85 | 8.60 | 7.95 | 7.29 |
Ni | 10.23 | 10.04 | 9.35 | 6.13 | 9.31 | 10.13 | 12.25 | 5.71 |
Mo | 3.20 | 8.94 | 4.54 | 24.56 | 7.54 | 12.71 | 6.38 | 14.15 |
表5
CoCrFeMnNiMox高熵合金涂层的阳极极化阶段钝化区的相应参数
涂层 | Ep/V | Etr/V | Ew/V | Imp/(A·cm-2) | Icoor/(A·cm-2) | Ecoor/V |
---|---|---|---|---|---|---|
Mo0.00 | -0.427 | 0.058 | 0.485 | 3.97×10-4 | 7.36×10-6 | -0.466 |
Mo0.25 | -0.450 | 0.529 | 0.979 | 1.52×10-4 | 3.93×10-6 | -0.487 |
Mo0.50 | -0.441 | 0.417 | 0.858 | 1.32×10-4 | 5.26×10-6 | -0.471 |
Mo0.75 | -0.402 | 0.337 | 0.739 | 2.56×10-5 | 3.69×10-6 | -0.432 |
Mo1.00 | -0.447 | 0.481 | 0.928 | 1.24×10-4 | 5.95×10-6 | -0.479 |
[1] |
LIU H X, WANG C Q, ZHANG X W, et al. Improving the corrosion resistance and mechanical property of 45 steel surface by laser cladding with Ni60CuMoW alloy powder[J]. Surface and Coatings Technology, 2013, 228: S296-S300.
doi: 10.1016/j.surfcoat.2012.05.115 URL |
[2] | 吴军, 朱冬冬, 杨日初, 等. 45钢轴面激光熔覆Ni60AA涂层工艺参数优化及摩擦磨损性能研究[J]. 激光与光电子学进展, 2021, 58(11): 304-314. |
WU Jun, ZHU Dongdong, YANG Richu, et al. Parameters optimization and friction and wear properties for laser cladding Ni60AA coating on 45 steel shaft surface[J]. Laser & Optoelectronics Progress, 2021, 58(11): 304-314. | |
[3] | 马玉山, 何涛, 常占东, 等. 45钢阀杆失效机制分析[J]. 有色矿冶, 2019, 35(3): 33-35. |
MA Yushan, HE Tao, CHANG Zhandong, et al. Analysis of failure mechanism of 45 steel valve rod[J]. Non-Ferrous Mining and Metallurgy, 2019, 35(3): 33-35. | |
[4] |
WENG F, YU H J, CHEN C Z, et al. Microstructures and wear properties of laser cladding Co-based composite coatings on Ti-6Al-4V[J]. Materials & Design, 2015, 80: 174-181.
doi: 10.1016/j.matdes.2015.05.005 URL |
[5] |
YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303.
doi: 10.1002/adem.200300567 URL |
[6] |
SHU F Y, LIU S, ZHAO H Y, et al. Structure and high-temperature property of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder[J]. Journal of Alloys and Compounds, 2018, 731: 662-666.
doi: 10.1016/j.jallcom.2017.08.248 URL |
[7] |
LIU J, LIU H, CHEN P J, et al. Microstructural characterization and corrosion behaviour of AlCoCrFeNiTix high-entropy alloy coatings fabricated by laser cladding[J]. Surface and Coatings Technology, 2019, 361: 63-74.
doi: 10.1016/j.surfcoat.2019.01.044 URL |
[8] |
WANG G, SHENG G M, SUN J C, et al. Mechanical properties and microstructure evolution of CrMnFeCoNi HEA/304 SS dissimilar brazing joints[J]. Journal of Alloys and Compounds, 2020, 829: 154520.
doi: 10.1016/j.jallcom.2020.154520 URL |
[9] |
WANG C, LI T H, LIAO Y C, et al. Hardness and strength enhancements of CoCrFeMnNi high-entropy alloy with Nd doping[J]. Materials Science and Engineering: A, 2019, 764: 138192.
doi: 10.1016/j.msea.2019.138192 URL |
[10] |
KUMAR J, KUMAR N, DAS S, et al. Effect of Al addition on the microstructural evolution of equiatomic CoCrFeMnNi alloy[J]. Transactions of the Indian Institute of Metals, 2018, 71(11): 2749-2758.
doi: 10.1007/s12666-018-1443-4 URL |
[11] |
STEPANOV N D, SHAYSULTANOV D G, SALISHCHEV G A, et al. Effect of V content on microstructure and mechanical properties of the CoCr-FeMnNiVx high entropy alloys[J]. Journal of Alloys and Compounds, 2015, 628: 170-185.
doi: 10.1016/j.jallcom.2014.12.157 URL |
[12] |
WANG J Y, ZHANG B S, YU Y Q, et al. Ti content effect on microstructure and mechanical properties of plasma-cladded CoCrFeMnNiTix high-entropy alloy coatings[J]. Surface Topography: Metrology and Properties, 2020, 8(1): 015004.
doi: 10.1088/2051-672X/ab615b URL |
[13] | 刘谦, 王昕阳, 黄燕滨, 等. Mo含量对CoCrFeNiMo高熵合金组织及耐蚀性能的影响[J]. 材料研究学报, 2020, 34(11): 868-874. |
LIU Qian, WANG Xinyang, HUANG Yanbin, et al. Effect of molybdenum content on microstructure and corrosion resistance of CoCrFeNiMo high entropy alloy[J]. Chinese Journal of Materials Research, 2020, 34(11): 868-874. | |
[14] | 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099. |
TAO Jichuang, LU Yiping. Effect of Mo content on microstructure, mechanical properties and corrosion resistance of Al0.1CoCrCu0.5FeNiMox high-entropy alloys[J]. Materials Reports, 2020, 34(8): 8096-8099. | |
[15] |
CHOU Y L, YEH J W, SHIH H C. The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments[J]. Corrosion Science, 2010, 52(8): 2571-2581.
doi: 10.1016/j.corsci.2010.04.004 URL |
[16] |
WANG W R, WANG J Q, SUN Z H, et al. Effect of Mo and aging temperature on corrosion behavior of (CoCrFeNi)100-xMox high-entropy alloys[J]. Journal of Alloys and Compounds, 2020, 812: 152139.
doi: 10.1016/j.jallcom.2019.152139 URL |
[17] |
MA M X, WANG Z X, ZHOU J C, et al. Effect of Ti doping on microstructure and wear resistance of CoCrCuFeMn high-entropy alloys[J]. Journal of Mechanical Engineering, 2020, 56(10): 110.
doi: 10.3901/JME.2020.10.110 |
[18] |
LIM S C, ASHBY M F. Wear mechanism maps[J]. Acta Metallurgica, 1987, 35(1): 1-24.
doi: 10.1016/0001-6160(87)90209-4 URL |
[19] |
DENG G Y, TIEU A K, SU L H, et al. Investigation into reciprocating dry sliding friction and wear properties of bulk CoCrFeNiMo high entropy alloys fabricated by spark plasma sintering and subsequent cold rolling processes: Role of Mo element concentration[J]. Wear, 2020, 460/461: 203440.
doi: 10.1016/j.wear.2020.203440 URL |
[20] |
YUN D W, SEO H S, JUN J H, et al. Molybdenum effect on oxidation resistance and electric conduction of ferritic stainless steel for SOFC interconnect[J]. International Journal of Hydrogen Energy, 2012, 37(13): 10328-10336.
doi: 10.1016/j.ijhydene.2012.04.013 URL |
[21] |
CAO Y K, LIU Y, LIU B, et al. Effects of Al and Mo on high temperature oxidation behavior of refractory high entropy alloys[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(7): 1476-1483.
doi: 10.1016/S1003-6326(19)65054-5 URL |
[22] | 刘兵, 柳林, 陈振宇. 添加微量Mo对铜基块体非晶合金耐蚀性的影响[J]. 金属学报, 2007, 43(1): 82-86. |
LIU Bing, LIU Lin, CHEN Zhenyu. Effect of micro Mo addition on anticorrosion ability of Cu base bulk metallic glass[J]. Acta Metallurgica Sinica, 2007, 43(1): 82-86. | |
[23] |
FROMHOLD A T, COOK E L. Diffusion currents in large electric fields for discrete lattices[J]. Journal of Applied Physics, 1967, 38(4): 1546-1553.
doi: 10.1063/1.1709721 URL |
[1] | 吴松波,蔡振兵,林禹,王璋,刘新龙,朱旻昊. 沙粒粒径对TC4钛合金冲击界面损伤行为的影响[J]. 上海交通大学学报(自然版), 2018, 52(5): 568-574. |
[2] | 薛超凡1,于敏1,姚举禄2,姬科举1,戴振东1. 碳纤维增强树脂基复合材料在低温条件下的 微动摩擦磨损性能[J]. 上海交通大学学报(自然版), 2018, 52(5): 604-611. |
[3] | 余廷1, 2, 邓琦林1, 张伟3, 董刚4, 杨建国1. 激光熔覆NiCrBSi合金涂层的裂纹形成机理 [J]. 上海交通大学学报(自然版), 2012, 46(07): 1043-1048. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||