上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (12): 1675-1687.doi: 10.16183/j.cnki.jsjtu.2021.201

所属专题: 《上海交通大学学报》2022年“电子信息与电气工程”专题

• 电子信息与电气工程 • 上一篇    下一篇

激光熔覆CoCrFeMnNiMox高熵合金涂层的微观组织及性能

刘昊1,2, 孙世峰1, 李晓佳1, 郝敬宾1, 杨海峰1()   

  1. 1.中国矿业大学 机电工程学院, 江苏 徐州 221116
    2.江苏省矿山智能采掘装备协同创新中心,江苏 徐州 221116
  • 收稿日期:2021-06-07 出版日期:2022-12-28 发布日期:2023-01-05
  • 通讯作者: 杨海峰 E-mail:hfyang@cumt.edu.cn.
  • 作者简介:刘 昊(1985-),男,江苏省徐州市人,博士,副教授,从事激光熔覆技术及数值仿真方面的研究.
  • 基金资助:
    江苏高校优势学科建设工程资助项目(PAPD)

Microstructure and Properties of CoCrFeMnNiMox High-Entropy Alloy Coating by Laser Cladding

LIU Hao1,2, SUN Shifeng1, LI Xiaojia1, HAO Jingbin1, YANG Haifeng1()   

  1. 1. School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
    2. Jiangsu Province and Education Ministry Co-Sponsored Collaborative Innovation Center of Intelligent Mining Equipment, Xuzhou 221116, Jiangsu, China
  • Received:2021-06-07 Online:2022-12-28 Published:2023-01-05
  • Contact: YANG Haifeng E-mail:hfyang@cumt.edu.cn.

摘要:

45钢存在耐磨性能及耐蚀性能较差等问题.采用激光熔覆技术在45钢表面制备了CoCrFeMnNiMox(x=0.00, 0.25, 0.50, 0.75, 1.00)高熵合金涂层,研究了Mo元素对高熵合金涂层的微观组织和性能的影响.结果表明:CoCrFeMnNiMox高熵合金涂层由单一的面心立方(FCC)固溶体组成.含Mo元素涂层微观结构为典型的枝晶和枝晶间结构,这是熔池在凝固过程中的非均质形核现象导致的.涂层的显微硬度随x值的增大而升高,其中Mo1.00涂层硬度最高为2.391 GPa,定量计算表明固溶强化是显微硬度提升的主要原因.随着Mo质量分数的升高,磨损机制从黏着磨损演变为磨粒磨损和氧化磨损.其中,Mo1.00涂层具有最低的体积磨损率(0.68×10-4 mm3/(N·m)).根据点缺陷模型理论分析了涂层钝化对耐蚀性能的影响.添加Mo元素提升了涂层钝化行为的脱水速率,使得氧化物层变厚,进而提升了涂层的耐蚀性.涂层的腐蚀机制为晶间腐蚀,Mo0.75涂层具有最小的自腐蚀电流密度和最正的自腐蚀电位,分别为3.69×10-6 A/cm2和 -0.432 V.

关键词: 激光熔覆, 高熵合金, 显微硬度, 磨损机制, 腐蚀机制

Abstract:

45 steel has the problems of low wear resistance and poor corrosion resistance. CoCrFeMnNiMox (x=0.00, 0.25, 0.50, 0.75, 1.00) high-entropy alloy coating was prepared on 45 steel by laser cladding. The influence of Mo on the microstructure and properties of coating were explored in detail. The results show that the CoCrFeMnNiMox high-entropy alloy coating is composed of a single face-centered cubic (FCC)solid-solution phase. The microstructure of the Mo-containing coating is a typical dendritic and interdendritic structure, which is caused by the heterogeneous nucleation of the molten pool during the solidification process. The microhardness of the coating increases with the increase of x, and the maximum microhardness of the Mo1.00 coating is 2.391 GPa. Quantitative calculations show that solution strengthening is the main reason for the increase of microhardness. With the increase of Mo mass fraction, the wear mechanism evolves from adhesive wear to abrasive wear and oxidative wear. The Mo1.00 coating has the lowest volume wear rate (0.68×10-4 mm3/(N·m)). The influence of the passivation process on the corrosion resistance of coating was analyzed based on the point defect model theory. The addition of the Mo element increases the dehydration rate of the passivation behavior of coating, which makes the oxide layer thicker, and thereby improving the corrosion resistance of coating. The corrosion mechanism of coatings is intergranular corrosion. Mo0.75 coating has the smallest self-corrosion current density and the most positive self-corrosion potential, which are 3.69×10-6 A/cm2 and -0.432 V, respectively.

Key words: laser cladding, high-entropy alloys, microhardness, wear mechanism, corrosion mechanism

中图分类号: