上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (12): 1688-1699.doi: 10.16183/j.cnki.jsjtu.2021.282
所属专题: 《上海交通大学学报》2022年“船舶海洋与建筑工程”专题
收稿日期:
2021-08-04
出版日期:
2022-12-28
发布日期:
2023-01-05
通讯作者:
蔡袁强
E-mail:caiyq@zju.edu.cn.
作者简介:
何 维(1998-),男,湖南省衡阳市人,硕士生,主要从事岩土工程中的数据融合、反演优化等方面的科研工作.
基金资助:
HE Wei1, SUN Honglei2, TAO Yuanqin1, CAI Yuanqiang1()
Received:
2021-08-04
Online:
2022-12-28
Published:
2023-01-05
Contact:
CAI Yuanqiang
E-mail:caiyq@zju.edu.cn.
摘要:
控制基坑开挖对邻近既有隧道的扰动对设计与施工至关重要.基于多目标优化方法,融合基坑开挖中的多类型监测数据,反演识别关键土体参数,量化修正隧道位移的时间效应.同时,为提高动态代理模型的优化效率,提出一种基于自适应加点准则的动态多目标优化(DMO-AIC)方法.该方法考虑了工程优化中动态代理模型的计算冗余,设计了自适应加点判别策略,能够自主识别寻优路径上代理模型的无效更新.结果表明,该方法在保证算法寻优性能和收敛速度的同时,显著减少了训练代理模型所需的数值模型调用次数,有利于动态代理模型在工程优化中的应用.虚拟数值算例结果表明,DMO-AIC能考虑挡墙侧移、隧道位移等多目标响应并同时对其进行更新.将DMO-AIC方法应用于上海外滩596基坑工程,合理更新了时间效应,准确预测了基坑分步开挖引起的既有隧道竖向位移.
中图分类号:
何维, 孙宏磊, 陶袁钦, 蔡袁强. 开挖引起的隧道位移动态多目标优化反演预测[J]. 上海交通大学学报, 2022, 56(12): 1688-1699.
HE Wei, SUN Honglei, TAO Yuanqin, CAI Yuanqiang. Dynamic Multi-Objective Optimization Inverse Prediction of Excavation-Induced Tunnel Displacement[J]. Journal of Shanghai Jiao Tong University, 2022, 56(12): 1688-1699.
表5
上海外滩596基坑的开挖进程
步骤 | 进度 | 周期/d | 步骤 | 开挖进度 | 周期/d |
---|---|---|---|---|---|
1 | S2-A开挖至-1.7 m | 1 | 12 | S2-B开挖至-4.8 m | 2 |
2 | S1-A开挖至-1.7 m | 24 | 13 | S2-B开挖至-7.65 m | 2 |
3 | S2-A开挖至-6.0 m | 2 | 14 | S2-B开挖至-10.5 m | 4 |
4 | S2-A 开挖至-10.1 m | 14 | 15 | S2-B开挖至-14.25 m | 2 |
5 | S1-A 开挖至-5.9 m | 10 | 16 | S2-B开挖至坑底 | 9 |
6 | S2-A开挖-13.85 m | 3 | 17 | S1-B开挖至-1.7 m | 3 |
7 | S1-A开挖至-9.9 m | 12 | 18 | S1-B开挖至-4.8 m | 1 |
8 | S2-A开挖至坑底 | 13 | 19 | S1-B开挖至-7.5 m | 1 |
9 | S1-A开挖-13.7 m | 8 | 20 | S1-B开挖至-10.2 m | 2 |
10 | S1-A开挖至坑底 | 6 | 21 | S1-B开挖至-14.0 m | 3 |
11 | S2-B开挖至-1.7 m | 5 | 22 | S1-B开挖至坑底 | 3 |
表6
土体莫尔-库仑模型参数
土层 | 土质 | 厚度/m | 重度γ/(kg·m-3) | 卸荷模量Eu/MPa | 泊松比ν | 黏聚力c'/kPa | 摩擦角φ'/(°) |
---|---|---|---|---|---|---|---|
1 | 水泥搅拌桩 | 0~22, 0~28 | 22.0 | 180.0 | 0.40 | 50.0 | 40.0 |
2 | 淤泥质黏土 | 0~10 | 18.5 | 18.0(10~50) | 0.28 | 7.0 | 27.6 |
3 | 粉质黏土 | 10~29 | 17.5 | 28.5(15~90) | 0.31 | 15.0(0.22~0.40) | 29.5(17~35) |
4 | 杂填土 | 29~39 | 18.0 | 25.2 | 0.28 | 10.4 | 22.0 |
5 | 江滩土 | 39~49 | 19.3 | 40.3(30~150) | 0.27 | 5.0 | 30.4 |
6 | 砂质粉土 | 49~64 | 18.8 | 74.8(50~180) | 0.27 | 5.0 | 33.4 |
7 | 粉砂层 | 64~80 | 20.2 | 94.3(60~220) | 0.27 | 4.0 | 34.3 |
[1] |
JIN Y F, YIN Z Y, ZHOU W H, et al. Multi-objective optimization-based updating of predictions during excavation[J]. Engineering Applications of Artificial Intelligence, 2019, 78: 102-123.
doi: 10.1016/j.engappai.2018.11.002 URL |
[2] | 吉茂杰, 刘国彬. 开挖卸荷引起地铁隧道位移预测方法[J]. 同济大学学报(自然科学版), 2001, 29(5): 531-535. |
JI Maojie, LIU Guobin. Prediction method of displacement of subway tunnel due to excavation[J]. Journal of Tongji University (Natural Science), 2001, 29(5): 531-535. | |
[3] |
TAO Y Q, SUN H L, CAI Y Q. Predicting soil settlement with quantified uncertainties by using ensemble Kalman filtering[J]. Engineering Geology, 2020, 276: 105753.
doi: 10.1016/j.enggeo.2020.105753 URL |
[4] | 郑栋, 黄劲松, 李典庆. 基于多源信息融合的路堤沉降预测方法[J]. 岩土力学, 2019, 40(2): 709-719. |
ZHENG Dong, HUANG Jinsong, LI Dianqing. An approach for predicting embankment settlement by integrating multi-source information[J]. Rock and Soil Mechanics, 2019, 40(2): 709-719. | |
[5] | 蒋水华, 刘源, 张小波, 等. 有限数据条件下空间变异岩土力学参数随机反演分析及比较[J]. 岩石力学与工程学报, 2020, 39(6): 1265-1276. |
JIANG Shuihua, LIU Yuan, ZHANG Xiaobo, et al. Stochastic back analysis and comparison of spatially varying geotechnical mechanical parameters based on limited data[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(6): 1265-1276. | |
[6] |
SUN Y, JIANG Q H, YIN T, et al. A back-analysis method using an intelligent multi-objective optimization for predicting slope deformation induced by excavation[J]. Engineering Geology, 2018, 239: 214-228.
doi: 10.1016/j.enggeo.2018.03.019 URL |
[7] |
BOOKER A J, DENNIS J E, FRANK P D, et al. A rigorous framework for optimization of expensive functions by surrogates[J]. Structural Optimization, 1999, 17(1): 1-13.
doi: 10.1007/BF01197708 URL |
[8] |
张扬, 张维刚, 马桃, 等. 基于全局敏感性分析和动态代理模型的复杂非线性系统优化设计方法[J]. 机械工程学报, 2015, 51(4): 126-131.
doi: 10.3901/JME.2015.04.126 |
ZHANG Yang, ZHANG Weigang, MA Tao, et al. Optimization design method of non-linear complex system based on global sensitivity analysis and dynamic metamodel[J]. Journal of Mechanical Engineering, 2015, 51(4): 126-131.
doi: 10.3901/JME.2015.04.126 |
|
[9] |
ZHOU Z, LI D Q, XIAO T, et al. Response surface guided adaptive slope reliability analysis in spatially varying soils[J]. Computers and Geotechnics, 2021, 132: 103966.
doi: 10.1016/j.compgeo.2020.103966 URL |
[10] | LIU J, HAN Z H, SONG W P. Comparison of infill sampling criteria in kriging-based aerodynamic optimization[C]//28th congress of the international council of the aeronautical sciences. Brisbane, Australia: ICAS, 2012: 23-28. |
[11] | BISCHL B, WESSING S, BAUER N, et al. MOI-MBO: Multiobjective infill for parallel model-based optimization[M]. Cham: Springer International Publishing, 2014, 173-186. |
[12] | WAGNER T, TRAUTMANN H, MARTÍ L. A taxonomy of online stopping criteria for multi-objective evolutionary algorithms[C]//International Conference on Evolutionary Multi-Criterion Optimization. Berlin, Heidelberg: Springer, 2011. |
[13] |
REGIS R G. Multi-objective constrained black-box optimization using radial basis function surrogates[J]. Journal of Computational Science, 2016, 16: 140-155.
doi: 10.1016/j.jocs.2016.05.013 URL |
[14] | WAGNER T, EMMERICH M, DEUTZ A, et al. On expected-improvement criteria for model-based multi-objective optimization[C]//International Conference on Parallel Problem Solving from Nature. Berlin, Heidelberg: Springer, 2010. |
[15] | LOPHAVEN S, NIELSEN H B, SØNDERGAARD J. DACE: A Matlab kriging toolbox[M]. Copenhagen: The Technical University of Denmark, 2002. |
[16] |
COELLO C A C, PULIDO G T, LECHUGA M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 256-279.
doi: 10.1109/TEVC.2004.826067 URL |
[17] | 刘若辰, 李建霞, 刘静, 等. 动态多目标优化研究综述[J]. 计算机学报, 2020, 43(7): 1246-1278. |
LIU Ruochen, LI Jianxia, LIU Jing, et al. A survey on dynamic multi-objective optimization[J]. Chinese Journal of Computers, 2020, 43(7): 1246-1278. | |
[18] |
LEVASSEUR S, MALÉCOT Y, BOULON M, et al. Soil parameter identification using a genetic algorithm[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(2): 189-213.
doi: 10.1002/nag.614 URL |
[19] |
ZHAO B D, ZHANG L L, JENG D S, et al. Inverse analysis of deep excavation using differential evolution algorithm[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(2): 115-134.
doi: 10.1002/nag.2287 URL |
[20] |
SCHULTE D O, ARNOLD D, GEIGER S, et al. Multi-objective optimization under uncertainty of geothermal reservoirs using experimental design-based proxy models[J]. Geothermics, 2020, 86: 101792.
doi: 10.1016/j.geothermics.2019.101792 URL |
[21] | 徐中华, 宗露丹, 沈健, 等. 邻近地铁隧道的软土深基坑变形实测分析[J]. 岩土工程学报, 2019, 41 (Sup.1): 41-44. |
XU Zhonghua, ZONG Ludan, SHEN Jian, et al. Deformation of a deep excavation adjacent to metro tunnels in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (Sup.1): 41-44. | |
[22] | ADDENBROOKE T I. A flexibility number for the displacement controlled design of multi propped retaining walls[J]. Ground Engineering, 1994, 27(7): 41-45. |
[23] |
ADDENBROOKE T I, POTTS D M, DABEE B. Displacement flexibility number for multipropped retaining[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(8): 718-726.
doi: 10.1061/(ASCE)1090-0241(2000)126:8(718) URL |
[24] | 刘国彬, 侯学渊. 软土的卸荷模量[J]. 岩土工程学报, 1996, 18(6): 18-23. |
LIU Guobin, HOU Xueyuan. Unloading modulus of the Shanghai soft clay[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(6): 18-23. | |
[25] | 刘溢, 李镜培, 陈伟. 被动区深层搅拌桩加固对超大深基坑变形的影响[J]. 岩土工程学报, 2012, 34 (Sup.1): 465-469. |
LIU Yi, LI Jingpei, CHEN Wei. Effect of reinforcement of deep mixing piles on deformation of ultra-deep excavations in passive zone[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (Sup.1): 465-469. | |
[26] | 徐中华. 上海地区支护结构与主体地下结构相结合的深基坑变形性状研究[D]. 上海: 上海交通大学, 2007. |
XU Zhonghua. Deformation behavior of deep excavations supported by permanent structure in Shanghai soft deposit[D]. Shanghai: Shanghai Jiao Tong University, 2007. |
[1] | 杨其润, 李明广, 陈锦剑, 吴航. 同步实施的相邻基坑相互作用机理[J]. 上海交通大学学报, 2022, 56(6): 722-729. |
[2] | 冯国辉, 徐兴, 侯世磊, 范润东, 杨开放, 管凌霄, 徐长节. 基于Kerr地基模型的基坑开挖引起下卧既有隧道受力变形[J]. 上海交通大学学报, 2022, 56(4): 474-485. |
[3] | 陈仁朋, 王志腾, 吴怀娜, 刘源, 孟凡衍. 基于FAHP法和区间数改进TOPSIS法的盾构隧道下穿建筑物风险评估[J]. 上海交通大学学报, 2022, 56(12): 1710-1719. |
[4] | 陈拴, 吴怀娜, 陈仁朋, 沈水龙, 刘源. 上方长距离基坑开挖引起的共线隧道变形研究[J]. 上海交通大学学报, 2021, 55(6): 698-706. |
[5] | 陶威, 刘钊, 许灿, 朱平. 三维正交机织复合材料翼子板多尺度可靠性优化设计[J]. 上海交通大学学报, 2021, 55(5): 615-623. |
[6] | 陈永信. 滑翔飞行器气动外形与轨迹一体化设计优化[J]. 空天防御, 2021, 4(3): 76-84. |
[7] | 丘文桢, 宋兴宇, 张新曙. 基于代理模型的三立柱半潜平台多目标优化[J]. 上海交通大学学报, 2021, 55(1): 11-20. |
[8] | 陈舞, 王浩, 张国华, 王成汤, 钟国强. 基于T-S模糊故障树和贝叶斯网络的隧道坍塌易发性评价[J]. 上海交通大学学报, 2020, 54(8): 820-830. |
[9] | 肖朝昀, 李明广, 王大发, 陈锦剑. 降雨影响下残积土层中深基坑变形特性测试及分析[J]. 上海交通大学学报, 2020, 54(8): 873-880. |
[10] | 高亿文, 李明广, 陈锦剑. 超载影响下围护结构非对称基坑的受力及变形特性分析[J]. 上海交通大学学报, 2020, 54(6): 643-651. |
[11] | 范晓真, 许海明, 徐长节, 方焘, 谭勇. 非对称开挖砂性土基坑刚性支护结构解析解[J]. 上海交通大学学报, 2020, 54(4): 397-405. |
[12] | 应宏伟, 许鼎业, 王迪, 章丽莎. 波动承压水下基坑底部弱透水层的非Darcy渗流分析[J]. 上海交通大学学报, 2020, 54(12): 1300-1306. |
[13] | 张科, 吴亚东. 拓宽大涵道比风扇稳定运行范围的叶片优化设计[J]. 上海交通大学学报, 2020, 54(10): 1024-1034. |
[14] | 张子新,肖时辉,刘曈葳,黄昕,何人. 新型盾构隧道防水体系工程试验及数值分析[J]. 上海交通大学学报, 2019, 53(6): 688-695. |
[15] | 杨俊龙,门燕青,廖少明,高东奇,苏逢彬. 大直径盾构浅覆土下穿铁路桥涵的影响分析及施工控制[J]. 上海交通大学学报(自然版), 2019, 53(3): 297-304. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||