上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (12): 1666-1674.doi: 10.16183/j.cnki.jsjtu.2022.041
所属专题: 《上海交通大学学报》2022年“电子信息与电气工程”专题
唐泽宇1, 邹小虎1, 李鹏飞1, 张伟1,2(), 余佳奇3, 赵耀东1
收稿日期:
2022-02-25
出版日期:
2022-12-28
发布日期:
2023-01-05
通讯作者:
张伟
E-mail:zhanggwei1103@163.com.
作者简介:
唐泽宇(1988-),男,重庆市人,硕士生,从事辐射源识别技术研究.
基金资助:
TANG Zeyu1, ZOU Xiaohu1, LI Pengfei1, ZHANG Wei1,2(), YU Jiaqi3, ZHAO Yaodong1
Received:
2022-02-25
Online:
2022-12-28
Published:
2023-01-05
Contact:
ZHANG Wei
E-mail:zhanggwei1103@163.com.
摘要:
在非合作场景所导致的小样本条件下,稳健提取通信辐射源目标特征并准确识别目标是当前研究的难点和热点.针对正交频分复用通信辐射源的小样本个体识别问题,文章在相位域、时域翻转的数据增强和源领域实例迁移的基础上,提出一种非合作通信辐射源个体识别方法.采用不同域翻转的数据增强方法扩充数据集,结合改进的残差网络,达到提高正交频分复用通信辐射源个体识别准确率的目的,并引入迁移学习以增强识别模型的泛化能力.实验结果表明:数据增强策略提升了小样本下的正交频分复用通信辐射源个体识别准确率,迁移学习方法的引入加快了模型的收敛速度,小幅度提高模型识别准确率并提升了鲁棒性.
中图分类号:
唐泽宇, 邹小虎, 李鹏飞, 张伟, 余佳奇, 赵耀东. 基于迁移学习的小样本OFDM目标增强识别方法[J]. 上海交通大学学报, 2022, 56(12): 1666-1674.
TANG Zeyu, ZOU Xiaohu, LI Pengfei, ZHANG Wei, YU Jiaqi, ZHAO Yaodong. A Few-Shots OFDM Target Augmented Identification Method Based on Transfer Learning[J]. Journal of Shanghai Jiao Tong University, 2022, 56(12): 1666-1674.
[1] | 徐晋凯, 谢钧. 辐射源识别技术发展研究[J]. 信息技术与网络安全, 2021, 40(10): 1-7. |
XU Jinkai, XIE Jun. Research on the development of specific emitter identification[J]. Information Technology and Network Security, 2021, 40(10): 1-7. | |
[2] | 张谦, 王吉, 唐泽宇, 等. 基于深度学习的通信电台个体识别技术[J]. 电子信息对抗技术, 2021, 36(2): 36-40. |
ZHANG Qian, WANG Ji, TANG Zeyu, et al. Individual identification technique of communication transmitters based on deep learning[J]. Electronic Information Warfare Technology, 2021, 36(2): 36-40. | |
[3] | 陈悦, 雷迎科, 李昕, 等. 基于IQ图特征的通信辐射源个体识别[J]. 信号处理, 2021, 37(1): 120-125. |
CHEN Yue, LEI Yingke, LI Xin, et al. Specific emitter identification of communication radiation source based on the characteristics IQ graph features[J]. Journal of Signal Processing, 2021, 37(1): 120-125. | |
[4] | 黄少驰, 朱晓蕾. 一种基于射频指纹的通信个体识别方法[J]. 航天电子对抗, 2018, 34(1): 31-34. |
HUANG Shaochi, ZHU Xiaolei. A communication individual recognition method based on radio frequency fingerprint[J]. Aerospace Electronic Warfare, 2018, 34(1): 31-34. | |
[5] |
O’SHEA T J, ROY T, CLANCY T C. Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 168-179.
doi: 10.1109/JSTSP.2018.2797022 URL |
[6] | 李鹏, 阮晓钢, 朱晓庆, 等. 基于深度强化学习的区域化视觉导航方法[J]. 上海交通大学学报, 2021, 55(5): 575-585. |
LI Peng, RUAN Xiaogang, ZHU Xiaoqing, et al. A regionalization vision navigation method based on deep reinforcement learning[J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 575-585. | |
[7] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 770-778. |
[8] | 陈浩, 杨俊安, 刘辉. 基于深度残差适配网络的通信辐射源个体识别[J]. 系统工程与电子技术, 2021, 43(3): 603-609. |
CHEN Hao, YANG Junan, LIU Hui. Communication transmitter individual identification based on deep residual adaptation network[J]. Systems Engineering and Electronics, 2021, 43(3): 603-609. | |
[9] |
PAN Y W, YANG S H, PENG H, et al. Specific emitter identification based on deep residual networks[J]. IEEE Access, 2019, 7: 54425-54434.
doi: 10.1109/ACCESS.2019.2913759 |
[10] | 曲凌志, 杨俊安, 刘辉, 等. 一种基于复数残差网络的通信辐射源个体识别方法[J]. 信号处理, 2021, 37(1): 95-103. |
QU Lingzhi, YANG Junan, LIU Hui, et al. A method of personal identification of communication radiation source based on complex-valued residual network[J]. Journal of Signal Processing, 2021, 37(1): 95-103. | |
[11] | HE T, ZHANG Z, ZHANG H, et al. Bag of tricks for image classification with convolutional neural networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 558-567. |
[12] | 李辰, 李建勋. 卷积神经网络的正交性特征提取方法及其应用[J]. 上海交通大学学报, 2021, 55(10): 1320-1329. |
LI Chen, LI Jianxun. Orthogonal features extraction method and its application in convolution neural network[J]. Journal of Shanghai Jiao Tong University, 2021, 55(10): 1320-1329. | |
[13] | WANG Y Q, YAO Q M, KWOK J T, et al. Generalizing from a few examples[J]. ACM Computing Surveys, 2021, 53(3): 1-34. |
[14] | 方章闻, 张金艺, 李科, 等. 小样本条件下的通信辐射源半监督特征提取[J]. 系统工程与电子技术, 2020, 42(10): 2381-2389. |
FANG Zhangwen, ZHANG Jinyi, LI Ke, et al. Semi-supervised feature extraction of communication emitter under small sample condition[J]. Systems Engineering and Electronics, 2020, 42(10): 2381-2389. | |
[15] |
ZHOU H J, BAI J, WANG Y R, et al. Few-shot electromagnetic signal classification: A data union augmentation method[J/OL]. (2021-09-15)[2022-01-05]. https://doi.org/10.1016/j.cja.2021.07.014.
doi: 10.1016/j.cja.2021.07.014 |
[16] |
ZHANG W, JIANG L, DING C Z, et al. Small sample identification for specific emitter based on adversarial embedded networks[C/OL]. (2021-09-30)[2022-01-06]. https://doi.org/10.1007/978-3-030-87358-5_18.
doi: 10.1007/978-3-030-87358-5_18 |
[17] | 何新林, 戚宗锋, 李建勋. 基于隐变量后验生成对抗网络的不平衡学习[J]. 上海交通大学学报, 2021, 55(5): 557-565. |
HE Xinlin, QI Zongfeng, LI Jianxun. Unbalanced learning of generative adversarial network based on latent posterior[J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 557-565. | |
[18] |
LIU Y H, XU H, QI Z S, et al. Specific emitter identification against unreliable features interference based on time-series classification network structure[J]. IEEE Access, 2020, 8: 200194-200208.
doi: 10.1109/ACCESS.2020.3035813 URL |
[19] | ZHOU H J, JIAO L C, ZHENG S L, et al. Generative adversarial network-based electromagnetic signal classification: A semi-supervised learning framework[J]. China Communications, 2020, 17(10): 157-169. |
[20] | RIBANI R, MARENGONI M. A survey of transfer learning for convolutional neural networks[C]//2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images Tutorials. Rio de Janeiro, Brazil: IEEE, 2019: 47-57. |
[21] |
WEISS K, KHOSHGOFTAAR T M, WANG D D. A survey of transfer learning[J]. Journal of Big Data, 2016, 3(1): 1-40.
doi: 10.1186/s40537-015-0036-x URL |
[22] |
FENG Y T, CHENG Y J, WANG G L, et al. Radar emitter identification under transfer learning and online learning[J]. Information, 2019, 11(1): 15.
doi: 10.3390/info11010015 URL |
[23] | KUZDEBA S, ROBINSON J, CARMACK J. Transfer learning with radio frequency signals[C]//2021 IEEE 18th Annual Consumer Communications & Networking Conference. Las Vegas, NV, USA: IEEE, 2021: 1-9. |
[24] |
LIU H, HU P J, LIU Z. Communication specific emitter identification based on transfer learning[J]. Journal of Physics: Conference Series, 2020, 1626(1): 012027.
doi: 10.1088/1742-6596/1626/1/012027 URL |
[1] | 曾国治, 魏子清, 岳宝, 丁云霄, 郑春元, 翟晓强. 基于CNN-RNN组合模型的办公建筑能耗预测[J]. 上海交通大学学报, 2022, 56(9): 1256-1261. |
[2] | 吴庶宸, 戚宗锋, 李建勋. 基于深度学习的智能全局灵敏度分析[J]. 上海交通大学学报, 2022, 56(7): 840-849. |
[3] | 张晏合, 臧月进, 陈渤, 徐铭晟. 基于解耦表征变分自编码机的雷达目标识别算法[J]. 空天防御, 2022, 5(2): 87-93. |
[4] | 吕超凡, 言颖杰, 林力, 柴岗, 鲍劲松. 基于点云语义分割算法的下颌角截骨面设计[J]. 上海交通大学学报, 2022, 56(11): 1509-1517. |
[5] | 陶海红, 闫莹菲. 一种基于GA-CNN的网络化雷达节点遴选算法[J]. 空天防御, 2022, 5(1): 1-5. |
[6] | 金丽洁, 武亚涛. 基于双CNN的雷达信号调制类型识别方法[J]. 空天防御, 2022, 5(1): 66-70. |
[7] | 沈慧, 刘世民, 许敏俊, 黄德林, 鲍劲松, 郑小虎. 面向加工领域的数字孪生模型自适应迁移方法[J]. 上海交通大学学报, 2022, 56(1): 70-80. |
[8] | 王兴志, 翟海保, 严亚勤, 吴庆曦. 基于数字孪生和深度学习的新一代调控系统预调度方法[J]. 上海交通大学学报, 2021, 55(S2): 37-41. |
[9] | 王岩, 陈耀然, 韩兆龙, 周岱, 包艳. 基于互信息理论与递归神经网络的短期风速预测模型[J]. 上海交通大学学报, 2021, 55(9): 1080-1086. |
[10] | 何新林, 戚宗锋, 李建勋. 基于隐变量后验生成对抗网络的不平衡学习[J]. 上海交通大学学报, 2021, 55(5): 557-565. |
[11] | 王宇, 余岳峰, 朱小磊, 张忠孝. 基于光流法和深度学习的燃气火焰稳定性[J]. 上海交通大学学报, 2021, 55(4): 462-470. |
[12] | 蔡云泽, 张彦军. 基于双通道特征增强集成注意力网络的红外弱小目标检测方法[J]. 空天防御, 2021, 4(4): 14-22. |
[13] | 王悦行, 吴永国, 徐传刚. 基于深度迁移学习的红外舰船目标检测算法[J]. 空天防御, 2021, 4(4): 61-66. |
[14] | 姜宇迪, 胡晖, 殷跃红. 基于无监督迁移学习的电梯制动器剩余寿命预测[J]. 上海交通大学学报, 2021, 55(11): 1408-1416. |
[15] | 曹靖豪, 张俊举, 黄维, 姚若彤, 张平. 基于多尺度特征融合的无人机识别与检测[J]. 空天防御, 2021, 4(1): 60-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||