上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (10): 1320-1329.doi: 10.16183/j.cnki.jsjtu.2020.276
所属专题: 《上海交通大学学报》2021年12期专题汇总专辑; 《上海交通大学学报》2021年“自动化技术、计算机技术”专题
收稿日期:
2020-09-08
出版日期:
2021-10-28
发布日期:
2021-11-01
通讯作者:
李建勋
E-mail:lijx@sjtu.edu.cn
作者简介:
李 辰(1990-),男,陕西省汉中市人,硕士生,工程师,主要从事神经网络及效能评估研究.
基金资助:
Received:
2020-09-08
Online:
2021-10-28
Published:
2021-11-01
Contact:
LI Jianxun
E-mail:lijx@sjtu.edu.cn
摘要:
针对卷积神经网络中存在的特征冗余问题,将正交性向量的概念引入特征中,从强化特征之间差异性的角度,提出一种适用于卷积神经网络的正交性特征提取方法.通过搭建并列的卷积神经网络支路结构,设计正交损失函数,从而促使卷积核提取出相互正交的样本特征,丰富特征多样性,消除特征冗余,提升特征用于分类识别的效果.在一维样本数据集上的实验结果表明,相比于普通的卷积神经网络,所提方法能够监督不同卷积核,挖掘出更为全面的正交性特征信息,进而提升卷积神经网络的性能效率,为后续模式识别和紧凑型神经网络的研究奠定基础.
中图分类号:
李辰, 李建勋. 卷积神经网络的正交性特征提取方法及其应用[J]. 上海交通大学学报, 2021, 55(10): 1320-1329.
LI Chen, LI Jianxun. Orthogonal Features Extraction Method and Its Application in Convolution Neural Network[J]. Journal of Shanghai Jiao Tong University, 2021, 55(10): 1320-1329.
[1] |
KANG X D, XIANG X L, LI S T, et al. PCA-based edge-preserving features for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12):7140-7151.
doi: 10.1109/TGRS.2017.2743102 URL |
[2] |
WU X H, ZUO W M, LIN L, et al. F-SVM: Combination of feature transformation and SVM learning via convex relaxation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(11):5185-5199.
doi: 10.1109/TNNLS.2018.2791507 URL |
[3] | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. (2014-09-04) [2020-05-18]. https://arxiv.org/abs/1409.1556 . |
[4] | 刘娟宏, 胡彧, 黄鹤宇. 端到端的深度卷积神经网络语音识别[J]. 计算机应用与软件, 2020, 37(4):192-196. |
LIU Juanhong, HU Yu, HUANG Heyu. End-to-end speech recognition based on deep convolution neural network[J]. Computer Applications and Software, 2020, 37(4):192-196. | |
[5] | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE, 2015: 3431-3440. |
[6] |
ADLER P, FALK C, FRIEDLER S A, et al. Auditing black-box models for indirect influence[J]. Knowledge and Information Systems, 2018, 54(1):95-122.
doi: 10.1007/s10115-017-1116-3 URL |
[7] | ZHANG Q L, JIANG Z Q, LU Q S, et al. Split to be slim: An overlooked redundancy in vanilla convolution[C]// Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. California, USA: International Joint Conferences on Artificial Intelligence Organization, 2020: 3195-3201. |
[8] | HE Y H, ZHANG X Y, SUN J. Channel pruning for accelerating very deep neural networks[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017: 17453051. |
[9] | CHEN C F, LEE G G, SRITAPAN V, et al. Deep convolutional neural network on iOS mobile devices[C]// 2016 IEEE International Workshop on Signal Processing Systems (SiPS). Dallas, TX, USA: IEEE, 2016: 130-135. |
[10] | QIU J X, CHEN C, LIU S C,, et al. SlimConv: Reducing channel redundancy in convolutional neural networks by weights flipping [EB/OL].(2020-03-08) [2020-05-18]. https://www.researchgate.net/publication/339997878_SlimConv_Reducing_Channel_Redundancy_in_Convolutional_Neural_Networks_by_Weights_Flipping . |
[11] | HAN K, WANG Y H, TIAN Q, et al. GhostNet: More features from cheap operations[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA: IEEE, 2020: 19874590. |
[12] | 卢泓宇, 张敏, 刘奕群, 等. 卷积神经网络特征重要性分析及增强特征选择模型[J]. 软件学报, 2017, 28(11):2879-2890. |
LU Hongyu, ZHANG Min, LIU Yiqun, et al. Convolution neural network feature importance analysis and feature selection enhanced model[J]. Journal of Software, 2017, 28(11):2879-2890. | |
[13] |
BRO R, SMILDE A K. Principal component analysis[J]. Analytical Methods, 2014, 6(9):2812-2831.
doi: 10.1039/C3AY41907J URL |
[14] | CHIANG H L, KADUR T, FETTWEIS G. Analyses of orthogonal and non-orthogonal steering vectors at millimeter wave systems[C]// 2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM). Coimbra, Portugal: IEEE, 2016: 16192551. |
[15] | 孙文赟, 宋昱, 陈昌盛. 基于卷积-反卷积网络的正交人脸特征学习算法[J]. 深圳大学学报(理工版), 2020, 37(5):474-481. |
SUN Wenyun, SONG Yu, CHEN Changsheng. An orthogonal facial feature learning method based on convolutional-deconvolutional network[J]. Journal of Shenzhen University (Science and Engineering), 2020, 37(5):474-481. | |
[16] |
GU J X, WANG Z H, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77:354-377.
doi: 10.1016/j.patcog.2017.10.013 URL |
[17] | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, Massachusetts, USA: IEEE, 2015: 1-9. |
[18] | LUO W J, LI Y J, URTASUN R, et al. Understanding the effective receptive field in deep convolutional neural networks [EB/OL].(2017-01-15) [2020-05-18]. https://www.researchgate.net/publication/312461699_Understanding_the_Effective_Receptive_Field_in_Deep_Convolutional_Neural_Networks . |
[19] | MURUGAN P. Feed forward and backward run in deep convolution neural network[EB/OL]. (2017-11-20) [2020-05-18]. https://www.researchgate.net/publication/320975739_Feed_Forward_and_Backward_Run_in_Deep_Convolution_Neural_Network . |
[1] | 曾国治, 魏子清, 岳宝, 丁云霄, 郑春元, 翟晓强. 基于CNN-RNN组合模型的办公建筑能耗预测[J]. 上海交通大学学报, 2022, 56(9): 1256-1261. |
[2] | 吴庶宸, 戚宗锋, 李建勋. 基于深度学习的智能全局灵敏度分析[J]. 上海交通大学学报, 2022, 56(7): 840-849. |
[3] | 全大英, 陈赟, 唐泽雨, 李世通, 汪晓锋, 金小萍. 基于双通道卷积神经网络的雷达信号识别[J]. 上海交通大学学报, 2022, 56(7): 877-885. |
[4] | 赵勇, 苏丹. 基于4种长短时记忆神经网络组合模型的畸形波预报[J]. 上海交通大学学报, 2022, 56(4): 516-522. |
[5] | 陶海红, 闫莹菲. 一种基于GA-CNN的网络化雷达节点遴选算法[J]. 空天防御, 2022, 5(1): 1-5. |
[6] | 武光利, 郭振洲, 李雷霆, 王成祥. 融合FCN和LSTM的视频异常事件检测[J]. 上海交通大学学报, 2021, 55(5): 607-614. |
[7] | 邱忠宇, 赵文龙, 高文, 潘洪涛, 史冉东. 动态视觉传感器的目标检测算法对比分析[J]. 空天防御, 2021, 4(4): 101-106. |
[8] | 祁生勇, 臧月进, 吕国云, 杜明. 基于生成对抗网络的空中目标图像生成算法研究[J]. 空天防御, 2021, 4(2): 67-. |
[9] | 石敏, 蔡少委, 易清明. 基于空洞-稠密网络的交通拥堵预测模型[J]. 上海交通大学学报, 2021, 55(2): 124-130. |
[10] | 薛蓉蓉, 王志武, 颜国正, 庄浩宇. 肠道机器人获取的肠道图像降噪处理方法[J]. 上海交通大学学报, 2021, 55(10): 1303-1309. |
[11] | 章云港,杨剑锋,易本顺. 低剂量CT图像去噪的改进型残差编解码网络[J]. 上海交通大学学报, 2019, 53(8): 983-989. |
[12] | 颜波,张磊,褚学宁. 基于卷积神经网络的用户感知评估建模[J]. 上海交通大学学报, 2019, 53(7): 844-851. |
[13] | 郭拓1,2,王英民1,张立琛1. 采用特征向量夹角联合概率密度函数的 信源个数估计方法[J]. 上海交通大学学报(自然版), 2018, 52(4): 469-473. |
[14] | 李洋洋,史历程,万卫兵,赵群飞. 基于卷积神经网络的三维物体检测方法[J]. 上海交通大学学报(自然版), 2018, 52(1): 7-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||