[1]冯梦怡, 曾炜杰, 谷波. 不同回路结构表冷器的变工况性能分析[J]. 流体机械, 2017, 45(9): 82-86.
FENG Mengyi, ZENG Weijie, GU Bo. Analysis on the performance of fin-tube heat exchanger with different structures in variable conditions[J]. Fluid Machinery, 2017, 45(9): 82-86.
[2]张杰, 谷波, 方继华. 受限空间中翅片管换热器的性能分析[J]. 制冷学报, 2014, 35(2): 36-43.
ZHANG Jie, GU Bo, FANG Jihua. Performance analysis on the fin-tube heat exchanger in limited space[J]. Journal of Refrigeration, 2014, 35(2): 36-43.
[3]韩维哲, 丁国良, 胡海涛, 等. 湿工况下翅片管换热器空气侧热质传递的数值模型[J]. 上海交通大学学报, 2013, 47(3): 385-391.
HAN Weizhe, DING Guoliang, HU Haitao, et al. Numerical model of heat and mass transfer for tube-finned heat exchangers under dehumidifying conditions[J]. Journal of Shanghai Jiao Tong University, 2013, 47(3): 385-391.
[4]曾炜杰, 谷波, 李强林. 圆柱型翅片管换热器变工况传热性能模拟与分析[J]. 制冷学报, 2019, 40(2): 28-35.
ZENG Weijie, GU Bo, LI Qianglin. Simulation and analysis of heat transfer performance of cylindrical fin-and-tube heat exchanger under variable conditions[J]. Journal of Refrigeration, 2019, 40(2): 28-35.
[5]WU X Z, ZHAO J N, WANG F H. Simplified number of transfer unit formulas for the thermal performance calculation of multi-pass fin-tube heat exchangers[J]. Science and Technology for the Built Environment, 2015, 21(2): 238-245.
[6]MARKOVI S, JAIMOVI B, GENI S, et al. Air side pressure drop in plate finned tube heat exchangers[J]. International Journal of Refrigeration, 2019, 99: 24-29.
[7]KALOGIROU S. Applications of artificial neural networks in energy systems[J]. Energy Conversion and Management, 1999, 40(10): 1073-1087.
[8]DING G L. Recent developments in simulation techniques for vapour-compression refrigeration systems[J]. International Journal of Refrigeration, 2007, 30(7): 1119-1133.
[9]郭梦茹, 谭泽汉, 陈焕新, 等. 基于遗传算法和BP神经网络的多联机阀类故障诊断[J]. 制冷学报, 2018, 39(2): 119-125.
GUO Mengru, TAN Zehan, CHEN Huanxin, et al. Valve fault diagnosis of variable refrigerant flow system based on genetic algorithm and back propagation neural network[J]. Journal of Refrigeration, 2018, 39(2): 119-125.
[10]HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366. |