上海交通大学学报 ›› 2020, Vol. 54 ›› Issue (6): 615-623.doi: 10.16183/j.cnki.jsjtu.2018.184
张建军1,吴中华1,刘群坡1,王红旗1,刘卫东2
出版日期:
2020-06-28
发布日期:
2020-07-03
通讯作者:
吴中华,男,讲师,电话(Tel.):0391-3987550;E-mail: wuzhonghua@hpu.edu.cn.
作者简介:
张建军(1983-),男,河南省周口市人,讲师,主要从事水下机械手遥操作及力觉感知研究.
基金资助:
ZHANG Jianjun 1,WU Zhonghua 1,LIU Qunpo 1,WANG Hongqi 1,LIU Weidong 2
Online:
2020-06-28
Published:
2020-07-03
摘要: 在主从机械手遥操作实现力、位移协同一致跟踪控制过程中,存在着机械手关节摩擦以及外部不确定干扰引起的模型不确定的问题,针对此问题提出了双边自适应阻抗控制策略.通过设计两种非线性模型参考自适应控制器,设计基于滑模函数的鲁棒自适应控制律补偿机械手模型不确定误差;利用自适应律估计外界干扰的上界,保证了主从机械手闭环动态方程与参考阻抗模型动态方程相一致,实现了主从机械手末端对参考阻抗模型输出的期望位置误差渐进收敛于零.通过李雅普诺夫函数证明了跟踪性能与全局稳定性,在MATLAB/Simulink平台上实现了二自由度机械手遥操作仿真实验.结果表明:整体控制在模型不确定及外部干扰条件下具有很好的力-位置跟踪渐进收敛能力,整体系统具有稳定性和较高的透明性,并且具有鲁棒性及较小的稳态误差,具有自适应控制能力.
中图分类号:
张建军, 吴中华, 刘群坡, 王红旗, 刘卫东. 主从机械手遥操作双边自适应阻抗控制策略[J]. 上海交通大学学报, 2020, 54(6): 615-623.
ZHANG Jianjun, WU Zhonghua, LIU Qunpo, WANG Hongqi, LIU Weidong. Bilateral Adaptive Impedance Control Scheme in Master-Slave Manipulator Teleoperation System[J]. Journal of Shanghai Jiaotong University, 2020, 54(6): 615-623.
[1]CHEN Z, PAN Y J, GU J. Integrated adaptive robust control for multilateral teleoperation systems under arbitrary time delays[J]. International Journal of Robust and Nonlinear Control, 2016, 26(12): 2708-2728. [2]ZHAI D H, XIA Y. Adaptive fuzzy control of multilateral asymmetric teleoperation for coordinated multiple mobile manipulators[J]. IEEE Transactions on Fuzzy Systems, 2016, 24(1): 57-70. [3]ZHAI D H, XIA Y. Adaptive control for teleoperation system with varying time delays and input saturation constraints[J]. IEEE Transactions on industrial electronics, 2016, 63(11): 6921-6929. [4]WANG H, XIE Y. Adaptive inverse dynamics control of robots with uncertain kinematics and dynamics[J]. Automatica, 2009, 45(9): 2114-2119. [5]IMAIDA T, SENDA K. Performance improvement of the PD-based bilateral teleoperators with time delay by introducing relative D-control[J]. Advanced Robotics, 2015, 29(6): 385-400. [6]ZHAI D H, XIA Y. Adaptive finite-time control for nonlinear teleoperation systems with asymmetric time-varying delays[J]. International Journal of Robust and Nonlinear Control, 2016, 26(12): 2586-2607. [7]CHO H C, PARK J H, KIM K, et al. Sliding-mode-based impedance controller for bilateral teleoperation under varying time-delay[C]∥Proceedings of the 2001 IEEE International Conference on Robotics and Automation, Seoul Kores: IEEE, 2001: 1025-1030. [8]SARRAS I, NUO E, BASAEZ L. An adaptive controller for nonlinear teleoperators with variable time-delays[J]. Journal of the Franklin Institute, 2014, 351(10): 4817-4837. [9]CHOPRA N, SPONG M W, LOZANO R. Synchronization of bilateral teleoperators with time delay[J]. Automatica, 2008, 44(8): 2142-2148. [10]LIU Y C, KHONG M H. Adaptive control for nonlinear teleoperators with uncertain kinematics and dynamics[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(5): 2550-2562. [11]周杰, 荣伟彬, 许金鹏, 等.基于SEM的微纳遥操作系统控制策略研究[J].仪器仪表学报, 2014, 35(11): 2448-2457. ZHOU Jie, RONG Weibin, XU Jinpeng, et al. Research on the control strategy of SEM based micro/nano tele-operation system[J]. Chinese Journal of Scientific Instrument, 2014, 35(11): 2448-2457. [12]CHO H C, PARK J H. Stable bilateral teleoperation under a time delay using a robust impedance control[J]. Mechatronics, 2005, 15(5): 611-625. [13]郭语, 孙志峻.基于扰动观测器的时延双边遥操作系统鲁棒阻抗控制[J].机械工程学报, 2012, 48(21): 15-21. GUO Yu, SUN Zhijun. Research on the control strategy of SEM based micro/nano tele-operation system[J]. Journal of Mechanical Engineering, 2012, 48(21): 15-21. [14]SHARIFI M, BEHZADIPOUR S, SALARIEH H, et al. Cooperative modalities in robotic tele-rehabilitation using nonlinear bilateral impedance control[J]. Control Engineering Practice, 2017, 67: 52-63. [15]SHARIFI M, SALARIEH H, BEHZADIPOUR S, et al. Tele-echography of moving organs using an impedance-controlled telerobotic system[J]. Mechatronics, 2017, 45: 60-70. [16]YANG Y, HUA C, LI J, et al. Finite-time output-feedback synchronization control for bilateral teleo-peration system via neural networks[J]. Information Sciences, 2017, 406/407: 216-233. [17]ZOU M, PAN Y J, FORBRIGGER S, et al. Adaptive robust control for bilateral teleoperated robotic manipulators with arbitrary time delays[C]∥International Conference on Robotics and Artificial Intelligence. Rawalpindi Pakistan: IEEE, 2016: 105-111. [18]MENDOZA M, BONILLA I, GONZLEZ-GALVN E, et al. Impedance control in a wave-based teleoperator for rehabilitation motor therapies assisted by robots[J]. Computer Methods and Programs in Biomedicine, 2016, 123: 54-67. [19]KIM B Y, AHN H S. A design of bilateral teleoperation systems using composite adaptive controller[J]. Control Engineering Practice, 2013, 21(12): 1641-1652. [20]HOSSEINI-SUNY K, MOMENI H, JANABI-SHARIFI F. A modified adaptive controller design for teleoperation systems[J]. Robotics and Autonomous Systems, 2010, 58(5): 676-683. [21]ARACIL R, AZORIN J M, FERRE M, et al. Bila-teral control by state convergence based on transparency for systems with time delay [J]. Robotics and Autonomous Systems, 2013, 61(2): 86-94. [22]SLOTINE J J E, LI W. Applied nonlinear control[M]. Englewood Cliffs, NJ: Prentice hall, 1991. [23]HUA C C, YANG Y, GUAN X. Neural network-based adaptive position tracking control for bilateral teleoperation under constant time delay[J]. Neuro Computing, 2013, 113(7): 204-212. [24]LI Z, XIA Y, WANG D, et al. Neural network-based control of networked trilateral teleoperation with geometrically unknown constraints[J]. IEEE Transactions on Cybernetics, 2016, 46(5): 1051-1064. [25]LIU W, ZHANG J, GAO L. Fuzzy impedance and sliding mode bilateral control in underwater ratio teleoperation based on observer[C]∥OCEANS 2016-Shanghai, Shanghai: IEEE, 2016: 1-7. [26]PAN Y, YU H, ER M J. Adaptive neural PD control with semiglobal asymptotic stabilization guarantee[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(12): 2264-2274. [27]LONDHE P S, MOHAN S, PATRE B M, et al. Robust task-space control of an autonomous underwater vehicle-manipulator system by PID-like fuzzy control scheme with disturbance estimator[J]. Ocean Engineering, 2017, 139: 1-13. |
[1] | 刘邱, 赵东亚. 单输入单输出系统离散积分滑模预测控制[J]. 上海交通大学学报, 2020, 54(9): 898-903. |
[2] | 马仲航, 张执南. 多旋翼无人机遥操机械臂多功能仿真实验平台的设计与实现[J]. 上海交通大学学报, 2020, 54(6): 636-642. |
[3] | 方佳, 陆志强. 考虑设备故障的鲁棒调度计划模板的建模优化[J]. 上海交通大学学报, 2020, 54(12): 1278-1290. |
[4] | 李冬辉,高峰. 基于扰动观测器的压缩式制冷系统改进Smith预估解耦控制[J]. 上海交通大学学报, 2019, 53(5): 593-599. |
[5] | 梁悦. 虚拟现实技术在水下机器人中的应用[J]. 海洋工程装备与技术, 2018, 5(增刊): 309-312. |
[6] | 韩刚,蔡旭. 不平衡电网下风电并网变流器的滑模电流控制[J]. 上海交通大学学报(自然版), 2018, 52(9): 1065-1071. |
[7] | 吕学勤1,张轲2,吴毅雄2. 移动焊接机器人轨迹跟踪控制机制及实验[J]. 上海交通大学学报(自然版), 2015, 49(03): 371-374. |
[8] | 李梁,王贺升,陈卫东. 受限网络带宽下遥操作机器人的视频传输控制[J]. 上海交通大学学报(自然版), 2014, 48(12): 1700-1707. |
[9] | 肖慧孝,杨建国,张毅. 基于状态空间模型的机床热误差动态建模[J]. 上海交通大学学报(自然版), 2014, 48(1): 22-26. |
[10] | 张晓迪,蔡云泽,何星,张卫东. 基于神经网络的不稳定时滞对象控制[J]. 上海交通大学学报(自然版), 2014, 48(07): 1033-1038. |
[11] | 王鲜芳1,苗军2,詹世涛2,3,钱志源2,4,王岁花1. 二轴导引头视线指向回路的鲁棒性设计[J]. 上海交通大学学报(自然版), 2014, 48(05): 735-740. |
[12] | 郑茂,王超,黄胜. 舰载机出动回收网络鲁棒性分析[J]. 上海交通大学学报(自然版), 2013, 47(12): 1934-1939. |
[13] | 李彬a, 季建华a, b, 李国威a. 综合收益和风险的供应链鲁棒性指标模型研究[J]. 上海交通大学学报(自然版), 2013, 47(03): 484-488. |
[14] | 王能建, 周丽杰, 刘红博. 甲板上牵引车-直升机系统的稳定性控制[J]. 上海交通大学学报(自然版), 2012, 46(07): 1146-1152. |
[15] | 周悦1, 孙锬锋1, 2, 蒋兴浩1, 2. 压缩域视频水印的失真漂移补偿算法[J]. 上海交通大学学报(自然版), 2012, 46(04): 630-635. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||