上海交通大学学报 ›› 2019, Vol. 53 ›› Issue (5): 529-534.doi: 10.16183/j.cnki.jsjtu.2019.05.003
尹雪乐,张文光,唐嘉琪,于谦
出版日期:
2019-05-28
发布日期:
2019-05-28
通讯作者:
张文光,男,副教授,博士生导师,电话(Tel.):021-34204851; E-mail: zhwg@sjtu.edu.cn.
作者简介:
尹雪乐(1994-),女,河北省邢台市人,硕士生,主要从事神经电极优化设计研究. E-mail: yinxuele941014@sjtu.edu.cn.
基金资助:
YIN Xuele,ZHANG Wenguang,TANG Jiaqi,YU Qian
Online:
2019-05-28
Published:
2019-05-28
摘要: 为了提高电极的长期有效性,基于鱼骨状神经电极,采用有限元模拟对电极-脑组织界面的微动进行了动力学分析.将该电极与传统商业电极的力学性能进行对比,验证了鱼骨状设计对降低脑组织微动损伤的有效性,并揭示了电极柄数对脑组织应力应变的影响.基于电极位点分布的合理性和最优化原则,提出了一种新型鱼骨状多柄电极.与原鱼骨电极相比,新型鱼骨电极的应变、应力和变形分别降低了 73.23%、48.78% 和 76.92%.将该新型电极与同位点分布的商业三杆电极进行对比,结果表明,在采集到的电信号相同时,新型电极大幅降低了脑组织应变.预期该电极的寿命可以得到有效延长.
中图分类号:
尹雪乐,张文光,唐嘉琪,于谦. 多柄鱼骨状神经电极的微动模拟与优化设计[J]. 上海交通大学学报, 2019, 53(5): 529-534.
YIN Xuele,ZHANG Wenguang,TANG Jiaqi,YU Qian. Micromotion Simulation and Optimal Design of Multi-Shank Fish-Bone-Shaped Electrode[J]. Journal of Shanghai Jiaotong University, 2019, 53(5): 529-534.
[1]MINEV I R, MUSIENKO P, HIRSCH A, et al. Electronic dura mater for long-term multimodal neural interfaces[J]. Science, 2015, 347(6218): 159-163. [2]FERNNDEZ E, GREGER B, HOUSE P A, et al. Acute human brain responses to intracortical microelectrode arrays: Challenges and future prospects[J]. Frontiers in Neuroengineering, 2014, 7: 24. [3]ALBA N A, DU Z J, CATT K A, et al. In vivo electrochemical analysis of a PEDOT/MWCNT neural electrode coating[J]. Biosensors, 2015, 5(4): 618-646. [4]GUTOWSKI S M, TEMPLEMAN K L, SOUTH A B, et al. Host response to microgel coatings on neural electrodes implanted in the brain[J]. Journal of Biomedical Materials Research Part A, 2014, 102(5): 1486-1499. [5]吴栋栋, 张文光, MERCERON Gilles, 等. 神经电极-脑组织界面微动环境力学特性仿真[J]. 浙江大学学报(工学版), 2013, 47(2): 256-260. WU Dongdong, ZHANG Wenguang, MERCERON Gilles, et al. Mechanical simulation of neural electrode-brain tissue interface under different micro-motion conditions[J]. Journal of Zhejiang University (Engineering Science), 2013, 47(2): 256-260. [6]GILLETTI A, MUTHUSWAMY J. Brain micromotion around implants in the rodent somatosensory cortex[J]. Journal of Neural Engineering (Engineering Science), 2006, 3(3): 189-195. [7]ZHANG W G, WU D D, LI Z W, et al. Electrochemically synthesized PANI-MnO2 coatings and their effect on interface properties of neural microelectrode[J]. Journal of Functional Materials, 2014, 45(12): 155-162. [8]TOOKER A, TOLOSA V, SHAH K G, et al. Optimization of multi-layer metal neural probe design[C]//International Conference of the IEEE Engineering in Medicine and Biology Society. New York: IEEE, 2012: 5995-5998. [9]KUO J T, KIM B J, HARA S A, et al. Novel flexible parylene neural probe with 3D sheath structure for enhancing tissue integration[J]. Lab Chip, 2013, 13(4): 554-561. [10]WU F, IM M, YOON E. A flexible fish-bone-shaped neural probe strengthened by biodegradable silk coating for enhanced biocompatibility[C]//Solid-State Sensors, Actuators and Microsystems Conference. New York: IEEE, 2011: 966-969. [11]HAMZAVI N, TSANG W M, SHIM V P W. Nonlinear elastic brain tissue model for neural probe-tissue mechanical interaction[C]//International IEEE/EMBS Conference on Neural Engineering. San Diego: IEEE, 2013: 1119-1122. [12]RASHID B, DESTRADE M, GILCHRIST M D. Hyperelastic and viscoelastic properties of brain tissue in tension[C]//ASME 2012 International Mechanical Engineering Congress and Exposition. New York: ASME, 2012: 921-929. [13]SEYMOUR J P, KIPKE D R. Fabrication of polymer neural probes with sub-cellular features for reduced tissue encapsulation[C]// International Conference of the IEEE Engineering in Medicine and Biology Society. New York: IEEE, 2006: 4606-4609. [14]MERRIAM M E. A three-dimensional bidirectional interface for neural mapping studies[D]. Michigan: University of Michigan, 2010. [15]EATON K P, HENRIQUEZ C S. Confounded spikes generated by synchrony within neural tissue models[J]. Neurocomputing, 2005, 65/66: 851-857. [16]POLIKOV V S, TRESCO P A, REICHERT W M. Response of brain tissue to chronically implanted neural electrodes[J]. Journal of Neuroscience Methods, 2005, 148(1): 1-18. |
[1] | 张培珍, 林芳. 开式呼吸蛙人专用氧气瓶声散射特性[J]. 上海交通大学学报, 2022, 56(6): 764-771. |
[2] | 贺雨欣, 张文光, 许李悦, 周旭晖. 用于辅助柔性神经电极深度植入的槽形截面硅针的设计[J]. 上海交通大学学报, 2022, 56(5): 648-655. |
[3] | 张宇, 刘海亭, 翁琳, 沈耀. 环形缺口小冲杆试样结合内聚力模型提取断裂韧性参数[J]. 上海交通大学学报, 2021, 55(7): 850-857. |
[4] | 郑昌隆, 丁晓红, 沈洪, 赵利娟. 基于自适应成长法的舵面结构动力学拓扑优化设计方法研究[J]. 空天防御, 2021, 4(2): 7-. |
[5] | 王峰, 陈佳莉, 陈灯红, 范勇, 李志远, 何卫平. 基于滑动Kriging插值的EFG-SBM求解含侧边界的稳态热传导问题[J]. 上海交通大学学报, 2021, 55(11): 1483-1492. |
[6] | 蒋倩倩,王家序,李俊阳,肖科,唐挺,王成. 双圆弧谐波传动齿廓参数对柔轮应力影响[J]. 上海交通大学学报, 2020, 54(2): 167-175. |
[7] | 叶礼裕, 王超, 郭春雨, 常欣. 集中冰载工况下的桨叶边缘强度校核方法[J]. 上海交通大学学报, 2020, 54(1): 10-19. |
[8] | 杜慧敏,罗震,敖三三,张禹,郝志壮. 5052铝合金电阻点焊电极形状对电极寿命的影响[J]. 上海交通大学学报, 2019, 53(6): 708-712. |
[9] | 刘永财,鲍益东,秦雪娇,刘玉琳,陈文亮. 板料成形快速模拟的中间构形构造方法[J]. 上海交通大学学报, 2019, 53(6): 713-718. |
[10] | 于谦,张文光,尹雪乐. 基于定向电沉积的神经电极表面性能[J]. 上海交通大学学报, 2019, 53(11): 1308-1315. |
[11] | 张向奎,王洋,王长生,胡平. 基于逆有限元法和网格映射的板材成型坯料优化[J]. 上海交通大学学报, 2019, 53(11): 1389-1394. |
[12] | 闫棣, 苏祺, 李四平. 屈曲问题有限元模拟的随机缺陷法[J]. 上海交通大学学报, 2019, 53(1): 19-25. |
[13] | 陈伟业a,邹天下a,唐鼎a,郭飞鹏a,李大永a, b. 铝箔板材成形极限试验及数值模拟[J]. 上海交通大学学报(自然版), 2018, 52(9): 1081-1085. |
[14] | 王紫旻,刘奇,顾瑞瑩,王武荣,韦习成. 凹模温度对AZ31B镁合金板材冲压成形性能的影响[J]. 上海交通大学学报(自然版), 2018, 52(9): 1092-1097. |
[15] | 应宏伟1,沈华伟1,张金红2,朱成伟1. 水位波动条件下盾构极限支护压力半解析研究[J]. 上海交通大学学报(自然版), 2018, 52(8): 982-990. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 346
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1044
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||