[1]MINEV I R, MUSIENKO P, HIRSCH A, et al. Electronic dura mater for long-term multimodal neural interfaces[J]. Science, 2015, 347(6218): 159-163.
[2]FERNNDEZ E, GREGER B, HOUSE P A, et al. Acute human brain responses to intracortical microelectrode arrays: Challenges and future prospects[J]. Frontiers in Neuroengineering, 2014, 7: 24.
[3]ALBA N A, DU Z J, CATT K A, et al. In vivo electrochemical analysis of a PEDOT/MWCNT neural electrode coating[J]. Biosensors, 2015, 5(4): 618-646.
[4]GUTOWSKI S M, TEMPLEMAN K L, SOUTH A B, et al. Host response to microgel coatings on neural electrodes implanted in the brain[J]. Journal of Biomedical Materials Research Part A, 2014, 102(5): 1486-1499.
[5]吴栋栋, 张文光, MERCERON Gilles, 等. 神经电极-脑组织界面微动环境力学特性仿真[J]. 浙江大学学报(工学版), 2013, 47(2): 256-260.
WU Dongdong, ZHANG Wenguang, MERCERON Gilles, et al. Mechanical simulation of neural electrode-brain tissue interface under different micro-motion conditions[J]. Journal of Zhejiang University (Engineering Science), 2013, 47(2): 256-260.
[6]GILLETTI A, MUTHUSWAMY J. Brain micromotion around implants in the rodent somatosensory cortex[J]. Journal of Neural Engineering (Engineering Science), 2006, 3(3): 189-195.
[7]ZHANG W G, WU D D, LI Z W, et al. Electrochemically synthesized PANI-MnO2 coatings and their effect on interface properties of neural microelectrode[J]. Journal of Functional Materials, 2014, 45(12): 155-162.
[8]TOOKER A, TOLOSA V, SHAH K G, et al. Optimization of multi-layer metal neural probe design[C]//International Conference of the IEEE Engineering in Medicine and Biology Society. New York: IEEE, 2012: 5995-5998.
[9]KUO J T, KIM B J, HARA S A, et al. Novel flexible parylene neural probe with 3D sheath structure for enhancing tissue integration[J]. Lab Chip, 2013, 13(4): 554-561.
[10]WU F, IM M, YOON E. A flexible fish-bone-shaped neural probe strengthened by biodegradable silk coating for enhanced biocompatibility[C]//Solid-State Sensors, Actuators and Microsystems Conference. New York: IEEE, 2011: 966-969.
[11]HAMZAVI N, TSANG W M, SHIM V P W. Nonlinear elastic brain tissue model for neural probe-tissue mechanical interaction[C]//International IEEE/EMBS Conference on Neural Engineering. San Diego: IEEE, 2013: 1119-1122.
[12]RASHID B, DESTRADE M, GILCHRIST M D. Hyperelastic and viscoelastic properties of brain tissue in tension[C]//ASME 2012 International Mechanical Engineering Congress and Exposition. New York: ASME, 2012: 921-929.
[13]SEYMOUR J P, KIPKE D R. Fabrication of polymer neural probes with sub-cellular features for reduced tissue encapsulation[C]// International Conference of the IEEE Engineering in Medicine and Biology Society. New York: IEEE, 2006: 4606-4609.
[14]MERRIAM M E. A three-dimensional bidirectional interface for neural mapping studies[D]. Michigan: University of Michigan, 2010.
[15]EATON K P, HENRIQUEZ C S. Confounded spikes generated by synchrony within neural tissue models[J]. Neurocomputing, 2005, 65/66: 851-857.
[16]POLIKOV V S, TRESCO P A, REICHERT W M. Response of brain tissue to chronically implanted neural electrodes[J]. Journal of Neuroscience Methods, 2005, 148(1): 1-18. |