上海交通大学学报(自然版) ›› 2019, Vol. 53 ›› Issue (4): 438-446.doi: 10.16183/j.cnki.jsjtu.2019.04.007
程小宣,陈俐
出版日期:
2019-04-28
发布日期:
2019-04-28
通讯作者:
陈俐,女,副教授,电话(Tel.):021-34208149;E-mail:li.h.chen@sjtu.edu.cn.
作者简介:
程小宣(1994-),女,江苏省南通市人,硕士生,研究方向为动力传动系统动力学与控制.
基金资助:
CHENG Xiaoxuan,CHEN Li
Online:
2019-04-28
Published:
2019-04-28
摘要: 离合器接合过程在短时间内经过空行程、滑摩和锁止3个阶段,需要合理设计其电子控制器的实时任务调度周期,以避免离散化导致系统失稳,降低接合品质.基于实时调度与控制性能协同设计的思路,建立离合传动系统动力学模型及其闭环控制模型,采用z变换进行离散化,根据离散系统稳定性得到控制任务的临界调度周期,然后模拟计算不同任务调度周期对离合器接合过程冲击度、滑摩功的影响,并在传动台架上进行试验验证.结果表明,任务调度周期小于临界值时,离合器接合品质未见显著改变;但任务调度周期一旦超过临界值,接合品质急剧恶化.
中图分类号:
程小宣,陈俐. 基于稳定性分析的电控离合器任务调度周期设计[J]. 上海交通大学学报(自然版), 2019, 53(4): 438-446.
CHENG Xiaoxuan,CHEN Li. Task Scheduling Period Selection Based on Stability Analysis of Automatic Clutches[J]. Journal of Shanghai Jiaotong University, 2019, 53(4): 438-446.
[1]葛安林, 吴锦秋, 郭万富. 离合器最佳接合规律的研讨[J]. 汽车工程, 1988(2): 54-65. GE Anlin, WU Jinqiu, GUO Wanfu. Research on optimizing enagaged-schedule of clutch[J]. Automotive Engineering, 1988(2): 54-65. [2]王书全. 液力机械式自动变速器技术及发展[J]. 北京汽车, 1997(3): 1-6. WANG Shuquan. Development of hydraulic mechanical automatic transmission[J]. Beijing Automotive Engineering, 1997(3): 1-6. [3]李君, 张建武, 冯金芝, 等.电控机械式自动变速器的发展、现状和展望[J]. 汽车技术, 2000(3): 1-3. LI Jun, ZHANG Jianwu, FENG Jinzhi, et al. Deve-lopment, current situation and forecast of electric controlled automated mechanical transmission[J]. Automobile Technology, 2000(3): 1-3. [4]吴光强, 杨伟斌, 秦大同. 双离合器式自动变速器控制系统的关键技术[J]. 机械工程学报, 2007, 43(2): 13-21. WU Guangqiang, YANG Weibin, QIN Datong. Key technique of dual clutch transmission control system[J]. Journal of Mechanical Engineering, 2007, 43(2): 13-21. [5]杨亚联, 秦大同, 谢勇. 汽车无级变速器的类型及基本原理[J]. 汽车技术, 1997(3): 59-61. YANG Yalian, QIN Datong, XIE Yong. Type and basic principle of automobile stepless transmission[J]. Automobile Technology, 1997(3): 59-61. [6]CHAN C C. The state of the art of electric, hybrid, and fuel cell vehicles[J]. Proceedings of the IEEE, 2007, 95(4): 704-718. [7]陈俐, 张建武, 习纲. 自动离合器的自适应最优控制[J]. 上海交通大学学报, 2000, 34(10): 1312-1316. CHEN Li, ZHANG Jianwu, XI Gang. Adaptive optimal control for automatic clutch[J]. Journal of Shanghai Jiao Tong University, 2000, 34(10): 1312-1316. [8]HORN J, BAMBERGER J, MICHAU P, et al. Flatness-based clutch control for automated manual transmissions[J]. Control Engineering Practice, 2003, 11(12): 1353-1359. [9]GLIELMO L, IANNELLI L, VACCA V, et al. Gearshift control for automated manual transmissions[J]. Control Engineering Practice, 2006, 11(1): 17-26. [10]GAO B, CHEN H, LIU Q, et al. Clutch slip control of automatic transmissions: A nonlinear feedforward-feedback design[C]//Proceedings of the 2010 IEEE International Conference on Control Applications, Yokohama, 2010: 884-889. [11]DOLCINI P, BECHART H, WIT C C D. Observer-based optimal control of dry clutch engagement[C]//Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, 2005, 62(4): 440-445. [12]GLIELMO L, VASCA F. Optimal control of dry clutch engagement[M]. SAE Technical Paper, 2000. [13]AMARI R, TONA P, ALAMIR M. Experimental evaluation of a hybrid MPC strategy for vehicle start-up with an automated manual transmission[C]//Proceedings of the 2009 European Control Conference, Budapest, 2009: 4271-4277. [14]刘怀, 王绪伟, 胡继峰. 控制系统周期性任务调度中优化采样频率的求取[J]. 计算机工程与应用, 2002, 38(14): 76-78. LIU Huai, WANG Xuwei, HU Jifeng. Solving optimal sampling frequencies for periodic task scheduling in control system[J]. Computer Engineering and Applications, 2002, 38(14): 76-78. [15]WU Y, BUTTAZZO G, BINI E, et al. Parameter selection for real-time controllers in resource-constrained systems[J]. IEEE Transactions on Industrial Informatics, 2010, 6(4): 610-620. [16]AYDIN H, MELHEM R, MOSSE D, et al. Optimal reward-based scheduling for periodic real-time tasks[J]. IEEE Transactions on Computers, 2001, 50(2): 111-130. [17]CERVIN A, VELASCO M, MARTI P, et al. Optimal online sampling period assignment: Theory and experiments[J]. IEEE Transactions on Control Systems Technology, 2011, 19(4): 902-910. [18]DAI S L, LIN H, GE S S. Scheduling-and-control codesign for a collection of networked control systems with uncertain delays[J]. IEEE Transactions on Control Systems Technology, 2010, 18(1): 66-78. [19]ZHANG L, GAO H, KAYNAK O. Network-induced constraints in networked control systems—A survey[J]. IEEE Transactions on Industrial Informatics, 2013, 9(1): 403-416. [20]KULKARNI M, SHIM T, ZHANG Y. Shift dynamics and control of dual-clutch transmissions[J]. Mechanism and Machine Theory, 2007, 42(2): 168-182. [21]CHEN L, XI G, SUN J. Torque coordination control during mode transition for a series-parallel hybrid electric vehicle[J]. IEEE Transactions on Vehicular Technology, 2012, 61(7): 2936-2949. [22]CHEN L, LIU F, YAO J, et al. Design and validation of clutch-to-clutch shift actuator using dual-wedge mechanism[J]. Mechatronics, 2017, 42(Sup C): 81-95. [23]GAO B, CHEN H, HU Y, et al. Nonlinear feedforward-feedback control of clutch-to-clutch shift technique[J]. Vehicle System Dynamics, 2011, 49(12): 1895-1911. [24]陈俐, 张建武, 黄维纲. 汽车电控离合器的反馈线性化控制[J]. 上海交通大学学报, 2000, 34(3): 384-388. CHEN Li, ZHANG Jianwu, HUANG Weigang. Feedback linearization control for electrically controllable clutches[J]. Journal of Shanghai Jiao Tong University, 2000, 34(3): 384-388. [25]程东升, 顾力强, 张建武. 基于反馈线性化的汽车AMT离合器滑模控制[J]. 汽车工程, 2002, 24(5): 384-386. CHENG Dongsheng, GU Liqiang, ZHANG Jianwu. Sliding mode control for electrically controlled clutch of AMT based on feedback linearization[J]. Automotive Engineering, 2002, 24(5): 384-386. [26]RICHARD C D, ROBERT H B. Modern control systems[M]. 13th Edition. Boston: Pearson, 2016: 602-620. |
[1] | 万慧, 齐晓慧, 李杰. 基于线性矩阵不等式的线性/非线性切换自抗扰控制系统的稳定性分析[J]. 上海交通大学学报, 2022, 56(11): 1491-1501. |
[2] | 金皓纯, 葛敏辉, 徐波. 基于极限学习机的双馈感应风力发电机综合自适应调频参数优化方法[J]. 上海交通大学学报, 2021, 55(S2): 42-50. |
[3] | 郭志远, 虞培祥, 欧阳华. 基于大涡模拟的圆柱绕流剪切层不稳定性[J]. 上海交通大学学报, 2021, 55(8): 924-933. |
[4] | 鄢雄伟, 杜波, 李绍隆, 张璐华, 李克勇. 推力变化对旋转导弹动稳定性的影响分析[J]. 空天防御, 2021, 4(4): 57-60. |
[5] | 王宇, 余岳峰, 朱小磊, 张忠孝. 基于光流法和深度学习的燃气火焰稳定性[J]. 上海交通大学学报, 2021, 55(4): 462-470. |
[6] | 王家琪, 郭建国, 郭宗易, 赵斌. 基于干扰观测器的高马赫数飞行器滑模控制[J]. 空天防御, 2021, 4(3): 85-91. |
[7] | 曹宇, 韩兆龙, 周岱, 雷航. 对转式垂直轴风力机气动性能研究[J]. 上海交通大学学报, 2021, 55(2): 141-148. |
[8] | 郑奕扬, 倪何, 金家善. 基于MSOP的蒸汽动力系统单参数运行稳定性评估方法[J]. 上海交通大学学报, 2021, 55(11): 1438-1444. |
[9] | 陈广锋, 余立潮. 基于级联的改进差分进化算法的仓储多订单分批优化[J]. 上海交通大学学报, 2021, 55(10): 1291-1302. |
[10] | 戚基艳, 金嘉琦, 付景顺. 舰载机无杆式牵引车横摆稳定性控制[J]. 上海交通大学学报, 2020, 54(9): 943-952. |
[11] | 吴亚东, 李涛, 张永杰. 基于圆弧斜缝处理机匣的压气机叶顶泄漏流实验和数值研究[J]. 上海交通大学学报, 2020, 54(7): 745-755. |
[12] | 赖生智,吴亚东,田杰,欧阳华. 不同叶顶间隙下压气机旋转不稳定性特性[J]. 上海交通大学学报, 2020, 54(3): 265-276. |
[13] | 任园园,李显生,郑雪莲,王杰. 液罐车精确动力学建模及其侧倾稳定性[J]. 上海交通大学学报, 2020, 54(3): 312-321. |
[14] | 温桠妮, 颜国正, 王志武, 姜萍萍, 薛蓉蓉, 王艺芸. 肠道机器人三维接收线圈的设计与优化[J]. 上海交通大学学报, 2020, 54(11): 1117-1123. |
[15] | 刘东喜,庄宿国,王晋,尤云祥. 矩形舱内三层液体晃荡特性的数值分析[J]. 上海交通大学学报, 2019, 53(8): 952-956. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||