上海交通大学学报 ›› 2018, Vol. 52 ›› Issue (6): 698-707.doi: 10.16183/j.cnki.jsjtu.2018.06.011
孙小帅,姚朝帮,熊鹰,叶青
发布日期:
2025-07-01
通讯作者:
孙小帅(1990-),男,河南省洛阳市人,博士生,主要研究方向为船舶流体力学.通信作者:姚朝帮,男,博士,讲师,电话(Tel.): 027-83443100; E-mail:hgycb2004111@163.com.
基金资助:
SUN Xiaoshuai,YAO Chaobang,XIONG Ying,YE Qing
Published:
2025-07-01
摘要: 基于三维移动脉动(3DTP)源格林函数,针对安装稳定鳍的小水线面双体船(SWATH),计入两片体之间的水动力干扰、黏性和稳定鳍的影响,建立了SWATH耐波性频域计算方法.通过与SWATH试验模型(SWATH-M)的试验结果对比,验证了计算方法的可靠性,进而研究了航速对SWATH-M耐波性的影响,并分析了黏性和稳定鳍对SWATH-M整船所受水动力的贡献.结果表明,基于3DTP的船体运动计算结果与试验结果吻合良好.船体的运动响应算子随波长变化呈现出双极值.随着航速提高,短波共振区附近的运动响应算子极值增大,而长波共振区附近的运动响应算子极值降低.黏性和稳定鳍对阻尼系数的影响主要体现在垂荡-垂荡阻尼系数和纵摇-纵摇阻尼系数上,对波浪干扰力的影响主要体现在垂荡力虚部和纵摇力矩实部.
中图分类号:
孙小帅,姚朝帮,熊鹰,叶青. 基于移动脉动源格林函数的小水线面 双体船耐波性频域计算[J]. 上海交通大学学报, 2018, 52(6): 698-707.
SUN Xiaoshuai,YAO Chaobang,XIONG Ying,YE Qing. Frequency Domain Computation Study on the Seakeeping Performance of Small-Waterplane-Area Twin Hull Based on the Translating-Pulsating Source Green Function[J]. Journal of Shanghai Jiao Tong University, 2018, 52(6): 698-707.
[1]KOS S, BRI D, FRANI V. Comparative analysis of conventional and swath passenger catamaran[C]∥Proceedings of the 12th International Conference on Transport Science, Portoro: Fakulteta za Pomorstvo in Promet, 2009. [2]BRIZZOLARA S, VERNENGO G. Automatic optimization computational method for unconventional SWATH ships resistance[J]. International Journal of Mathematical Models and Methods in Applied Sciences, 2011, 5(5): 882-889. [3]BOUSCASSE B, BROGLIA R, STERN F. Experimental investigation of a fast catamaran in head waves[J]. Ocean Engineering, 2013, 72(7): 318-330. [4]LEE C M. Theoretical prediction of motion of small waterplane area, twin-hull (SWATH) ships in waves[R]. SPD-76-0046, Bethesda: DTNSRDC Report, 1976. [5]HONG Y S. Improvements in the prediction of heave and pitch motions for SWATH ships[R]. SDR0928-02, Bethesda: DTNSRDC Departmental Report, 1980. [6]MCCREIGHT K K, STAHL R. Vertical plane motions of SWATH ships in regular waves[R]. SPD-1076-01, Bethesda: DTNSRDC Report, 1983. [7]MCCREIGHT K K. Predicting the motions of SWATH ships in waves—A validated mathematical model[R]. CRDKNSWC/HD-1350-03, Washing-ton: Naval Surface Warfare Center Carderock Division Hydromechanics Directorate Research and Development Report, 1995. [8]李向群. SWATH船型的耐波性研究[J]. 上海船舶运输科学研究所学报, 1988, 2: 41-46. LI Xiangqun. A study on the seakeeping ability of SWATH[J]. Journal of Shanghai Ship and Shipping Research Institute, 1988, 2: 41-46. [9]董祖舜, 董文才. 小水线面双体船纵向运动稳定性的简化判据及分析[J]. 中国造船, 1994 (4): 36-48. DONG Zushun, DONG Wencai. A simplified criterion and an analysis of some influence factors on longitudinal motion stability of small waterplane area twin-hull ships[J]. Shipbuilding of China, 1994(4): 36-48. [10]刘志华, 董文才, 熊鹰. 小型高速SWATH船下体型线研究[J]. 船舶工程, 2004(6): 4-8. LIU Zhihua, DONG Wencai, XIONG Ying. Study on lines of lower hull of small-sized high-speed SWATH ship[J]. Ship Engineering, 2004(6): 4-8. [11]毛筱菲. 小水线面双体船在波浪中的运动响应预报[J]. 船海工程, 2006 (4): 13-15. MAO Xiaofei. Numerical study of the motion response prediction of SWATH ship in waves[J]. Ship and Ocean Engineering, 2006(4):13-15. [12]CHAN H S. Prediction of motion and wave loads of twin-hull ships[J]. Marine Structures, 1996(6): 75-102. [13]吴介, 谷家扬, 管义锋, 等. 基于 Rankine 源法的小水线面双体科考船耐波性预报[J]. 江苏科技大学学报 (自然科学版), 2015, 29(2): 103-107. WU Jie, GU Jiayang, GUAN Yifeng, et al. Prediction of SWATH research ship seakeeping performance based on the Rankine source method[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2015, 29(2): 103-107. [14]QIAN P, YI H, LI Y. Numerical and experimental studies on hydrodynamic performance of a small-waterplane-area-twin-hull (SWATH) vehicle with inclined struts[J]. Ocean Engineering, 2015, 96: 181-191. [15]邓磊, 董文才, 姚朝帮. 顶浪规则波中小水线面双体船纵向运动特性数值分析[J]. 舰船科学技术, 2016, 38(8): 5-10. DENG Lei, DONG Wencai, YAO Chaobang. Numerical study on characteristics of SWATH ship longitudinal motions in regular head waves[J]. Ship Science and Technology, 2016, 38(8): 5-10. [16]BONFIGLIO L, BRIZZOLARA S, CHRYSSOSTOMIDIS C. Viscous free surface numerical simulations of oscillating SWATH ship sections[J]. Recent Researches in Mechanical Engineering, 2013(1): 33-38. [17]BONFIGLIO L, BRIZZOLARA S. Influence of viscosity on radiation forces: A comparison between monohull, catamaran and SWATH[C]∥Proceedings of the 23th International Offshore and Polar Engineering Conference, Alaska: International Society of Offshore and Polar Engineers, 2013. [18]BRIZZOLARA S, BONFIGLIO L, MEDEIROS J S. Influence of viscous effects on numerical prediction of motions of SWATH vessels in waves[J]. Ocean Systems Engineering, 2013, 3(3): 219-236. [19]XU Y, DONG W C. Study on characteristics of 3-D translating-pulsating source Green function of deep-water Havelock form and its fast integration method[J]. China Ocean Engineering, 2011, 25(3): 365-380. [20]YAO C B, DONG W C. Study on fast integration method for Bessho form translating-pulsating source Green’s function distributing on a panel[J]. Ocean Engineering, 2014, 89: 10-20. [21]YAO C B, DONG W C. A fast integration method for translating-pulsating source Green’s function in Bessho form[J]. Journal of Zhejiang University SCIENCE A, 2014, 15(2): 108-119. |
[1] | 郭军,陈作钢,戴原星,陈建平. 喷水推进器进流面获取方法及其应用[J]. 上海交通大学学报, 2020, 54(1): 1-9. |
[2] | 赵东亚,胡志强,陈刚. 浮式液化天然气系统液体装载船体的耦合响应[J]. 上海交通大学学报, 2019, 53(5): 540-548. |
[3] | 陈敏, 陈科, 尤云祥, 李飞. 南海八号深水半潜式平台内孤立波载荷预报[J]. 上海交通大学学报, 2019, 53(1): 42-48. |
[4] | 张宝吉1,鲁江2,顾民2. 基于骑浪/横甩薄弱性衡准的船舶航行安全性分析[J]. 上海交通大学学报(自然版), 2016, 50(01): 140-144. |
[5] | 刘晗a,马宁a,b*,邵闯a,顾解忡a,b. 限宽水域中船舶平面运动机构试验及水动力导数数值模拟[J]. 上海交通大学学报(自然版), 2016, 50(01): 115-122. |
[6] | 方昭昭1, 2, 朱仁传1, 缪国平1, 龚丞1. 数值波浪水池中航行船舶绕射问题的数值模拟[J]. 上海交通大学学报(自然版), 2012, 46(08): 1203-1209. |
[7] | 封培元a,马宁a,b,顾解忡a,b. 振荡水翼波能回收在船舶节能推进中的应用[J]. 上海交通大学学报(自然版), 2013, 47(06): 923-927. |
[8] | 潘光1,胡斌1,2,王鹏1,杨智栋1,王一云1. 泵喷推进器定常水动力性能数值模拟[J]. 上海交通大学学报(自然版), 2013, 47(06): 932-937. |
[9] | 董小倩,杨晨俊. 吊舱推进器桨毂间隙影响的数值分析[J]. 上海交通大学学报(自然版), 2013, 47(06): 932-937. |
[10] | 李宏伟,庞永杰,秦再白,杨溢. 基于广义预测控制的主动吸收造波[J]. 上海交通大学学报(自然版), 2014, 48(1): 111-115. |
[11] | 鹿麟,潘光. 泵喷推进器非定常空化性能数值模拟分析[J]. 上海交通大学学报(自然版), 2015, 49(02): 262-268. |
[12] | 刘辉1,2,冯榆坤1,2,陈作钢1,2,3,代燚1,2,3,田喜民1,4. 船舶艏侧推器脉动压力数值计算[J]. 上海交通大学学报, 2017, 51(3): 294-. |
[13] | 倪问池1,2,康庄1,张橙1,张立健1. 运用修正剪应力输运湍流模型模拟双自由度涡激振动[J]. 上海交通大学学报, 2017, 51(7): 819-825. |
[14] | 程勇1,嵇春艳1,陆婷婷1,翟钢军2. 聚焦波与超大型浮体作用的非线性数值模拟[J]. 上海交通大学学报, 2017, 51(7): 831-839. |
[15] | 傅慧萍a,b,李杰a. 轻载下的螺旋桨空化流场数值模拟[J]. 上海交通大学学报, 2018, 52(6): 631-635. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||