上海交通大学学报(自然版) ›› 2015, Vol. 49 ›› Issue (05): 614-619.
冯岩,饶宇,李博
收稿日期:
2014-09-30
基金资助:
国家自然科学基金项目(51176111, 81027001)资助
FENG Yan,RAO Yu,LI Bo
Received:
2014-09-30
摘要:
摘要: 利用数值计算方法研究了分别具有球形、椭球形、倾斜椭球形以及泪滴形凹陷涡发生器阵列表面的湍流传热与流阻性能.采用湍流模型Relizable k ε、SST (Shear Stress Transportation)和Standard kω模拟凹陷涡发生器表面的湍流传热与流阻性能,并与其实验结果进行对比,确定了Standard kω是研究凹陷传热和流动的最精确湍流模型.同时,通过数值计算分析了4种凹陷结构在雷诺数为8 500~60 000下的传热、流阻和流动特性,利用Matlab软件对数值计算结果进行后处理.结果表明:与充分发展的光滑通道内湍流流动相比,球形凹陷通道的传热性能提高了约40%,摩擦因子增加了约70%;椭球形凹陷通道的传热性能提高了约30%,摩擦因子增加了60%左右;倾斜椭球形凹陷通道的传热性能提高了约40%,摩擦因子增加了60%左右;泪滴形凹陷通道的传热性能提高了约70%,摩擦因子增加了约1倍,即泪滴形凹陷通道的传热性能和综合热性能最佳.
中图分类号:
冯岩,饶宇,李博. 凹陷涡发生器形状对湍流流动与传热性能的影响[J]. 上海交通大学学报(自然版), 2015, 49(05): 614-619.
FENG Yan,RAO Yu,LI Bo. Influence of Dimple Shapes on Turbulent Flow and Heat Transfer[J]. Journal of Shanghai Jiaotong University, 2015, 49(05): 614-619.
[1]Han J C, Dutta S, Ekkad S. Gas turbine heat transfer and cooling technology[M]. England: Taylor and Francis, 2001. [2]Rao Y, Zang S S. Flow and heat transfer characteristics in latticework cooling channels with dimple vortex generators[J]. ASME J Heat Transfer, 2014,136 (2): 0210170210110.[3]张翔,饶宇. 具有凹陷涡发生器的网格冷却结构内的流动和传热特性[J]. 航空动力学报,2013, 28(17):15031509.ZHANG Xiang, RAO Yu. Flow and heat transfer characteristics in latticework cooling structure with dimple vortex generators[J]. Journal of Aerospace Power, 2013, 28(17):15031509.[4]Chyu M K, Yu Y, Ding H, et al. Concavity enhanced heat transfer in an internal cooling passage[C]∥International Gas Turbine and Aeroengine Congress and Exhibition. USA: ASME, 1997: V003T09A08087.[5]Burgess N K, Ligrani P M. Effects of dimple depth on channel Nusselt numbers and friction factors[J]. ASME Journal Heat Transfer, 2005, 127(8): 839847.[6]Ligrani P M, Harrison J L, Mahmood G I, et al. Flow structure due to dimple depression on a channel surface[J]. Physics Fluids, 2001, 13 (11): 34423451.[7]Johann T, Nikolai K, Valery Z, et al. Flow structures and heat transfer on dimples in a staggered arrangement[J]. International Journal of Heat and Fluid Flow, 2012, 35 (1): 168175.[8]Kim H M, Moon M A, Kim K Y. Multiobjective optimization of a cooling channel with staggered elliptic dimples[J]. Energy, 2011, 36 (5): 34193428[9]Bunker R S, Donnellan K F. Heat transfer and friction factors for flows inside circular tubes with concavity surfaces[J]. ASME Journal of Turbomachinery, 200, 125 (4): 665672.[10]Rao Y, Wan C, Zang S. An experimental and numerical study of the flow and heat transfer in channels with pin findimple combined arrays of different configurations[J]. ASME J Heat Transfer, 2012, 134 (12): 121901.[11]Gee D L, Webb R L. Forced convection heat transfer in helically ribroughened tubes[J]. International Journal of Heat Mass Transfer, 1980, 23(8): 11271136. |
[1] | 肖克华, 罗稼昊, 饶宇. 航空发动机涡轮叶片尾缘楔形通道交错肋冷却实验[J]. 上海交通大学学报, 2022, 56(8): 1034-1042. |
[2] | 吴王浩, 段旭, 张鑫, 陈丹, 徐振东. 高马赫数钝头体气动/传热一体化计算方法研究[J]. 空天防御, 2022, 5(3): 87-92. |
[3] | 王聚团, 戚晓宁, 黄志明. 水下生产管汇测试技术及其改进研究[J]. 海洋工程装备与技术, 2022, 9(2): 43-49. |
[4] | 袁振钦, 邹 科, 孙亚峰, 刘 刚, 屈 衍, 李居跃. 基于时域分析法的动态电缆疲劳分析[J]. 海洋工程装备与技术, 2022, 9(2): 50-55. |
[5] | 王 娟, 杨明旺, 郑茂尧, 刘凌云, 赵立君. 高强钢在大型半潜式平台组块建造中的应用[J]. 海洋工程装备与技术, 2022, 9(1): 27-31. |
[6] | 陈 欣, 赵晓磊, 王立坤, 肖德明, 张腾月. 深水大型吸力锚建造技术研究[J]. 海洋工程装备与技术, 2022, 9(1): 32-36. |
[7] | 尹彦坤, 易涤非. 半潜式生产平台船体结构关键节点工程临界评估[J]. 海洋工程装备与技术, 2022, 9(1): 52-57. |
[8] | MA Qunsheng (马群圣), CEN Xingxing (岑星星), YUAN Junyi (袁骏毅), HOU Xumin (侯旭敏). Word Embedding Bootstrapped Deep Active Learning Method to Information Extraction on Chinese Electronic Medical Record[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 494-502. |
[9] | 陈清华, 高伟, 苏国用, 关维娟, 秦汝祥, 季家东, 马杨斌. 基于激光点热源非稳态传热模型测固体材料热物性参数[J]. 上海交通大学学报, 2021, 55(4): 471-479. |
[10] | ZHANG Shengfa (张胜发), TANG Na (唐纳), SHEN Guofeng (沈国峰), WANG Han (王悍), QIAO Shan (乔杉). Universal Software Architecture of Magnetic Resonance-Guided Focused Ultrasound Surgery System and Experimental Study[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 471-481. |
[11] | 安庆升, 孙立东, 武秋生. 碳纤维增强复合材料发射筒设计研究[J]. 空天防御, 2021, 4(2): 13-. |
[12] | KONG Xiangqiang (孔祥强), MENG Xiangxi (孟祥熙), LI Jianbo (李见波), SHANG Yanping (尚燕平), CUI Fulin (崔福林) . Comparative Study on Two-Stage Absorption Refrigeration Systems with Different Working Pairs[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 155-162. |
[13] | ZHUANG Weimin (庄蔚敏), WANG Pengyue (王鹏跃), AO Wenhong (熬文宏), CHEN Gang (陈刚) . Experiment and Simulation of Impact Response of Woven CFRP Laminates with Different Stacking Angles[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 218-230. |
[14] | ZHOU Xuhui (周旭辉), ZHANG Wenguang (张文光), XIE Jie (谢颉). Effects of Micro-Milling and Laser Engraving on Processing Quality and Implantation Mechanics of PEG-Dexamethasone Coated Neural Probe[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 1-9. |
[15] | HUANG Ningning (黄宁宁), MA Yixin (马艺馨), ZHANG Mingzhu (张明珠), GE Hao (葛浩), WU Huawei (吴华伟). Finite Element Modeling of Human Thorax Based on MRI Images for EIT Image Reconstruction[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 33-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||