上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (1): 60-69.doi: 10.16183/j.cnki.jsjtu.2023.146
江杰1,2,3, 陈丽君1,2, 柴文成1,2, 艾永林1,2, 欧孝夺1,2,3(), 龚健1,2
收稿日期:
2023-04-20
修回日期:
2023-08-08
接受日期:
2023-11-17
出版日期:
2025-01-28
发布日期:
2025-02-06
通讯作者:
欧孝夺,教授,博士生导师,电话(Tel.):0771-3812769;E-mail: 作者简介:
江杰(1979—),教授,博士生导师,从事复杂受力环境下的桩基理论与应用研究.
基金资助:
JIANG Jie1,2,3, CHEN Lijun1,2, CHAI Wencheng1,2, AI Yonglin1,2, OU Xiaoduo1,2,3(), GONG Jian1,2
Received:
2023-04-20
Revised:
2023-08-08
Accepted:
2023-11-17
Online:
2025-01-28
Published:
2025-02-06
摘要:
水平动荷载H(t)与扭矩T联合作用下的桩基受力变形较为复杂.为了更加准确地分析H(t)-T联合受荷桩的内力与位移,基于Pasternak地基模型考虑桩侧土体剪切效应;引入H(t)-T耦合因子,揭示多向荷载对桩身响应的影响机理;继而利用虚功原理推导桩身单元综合刚度矩阵;最后采用改进的有限杆单元法获得H(t)-T联合受荷桩内力与位移数值解;并与已有理论解和有限元模拟结果进行对比验证.参数分析表明:土体剪切效应可约束桩身水平位移,但对扭转变形影响较小;水平动荷载增强了桩身抗扭承载力,水平动荷载幅值从0.2Qu增大到1.0Qu时,桩顶扭转角减小了22.6%;增大动荷载无量纲频率会减小桩顶位移和桩身最大弯矩,外荷载动力效应随桩埋深增加而减弱;杆单元模型减少了单元划分数量和计算时间,可有效提高计算效率.
中图分类号:
江杰, 陈丽君, 柴文成, 艾永林, 欧孝夺, 龚健. 基于Pasternak地基模型的H(t)-T受荷桩受力变形分析[J]. 上海交通大学学报, 2025, 59(1): 60-69.
JIANG Jie, CHEN Lijun, CHAI Wencheng, AI Yonglin, OU Xiaoduo, GONG Jian. Force and Deformation Analysis of H(t)-T Loaded Pile Based on Pasternak Foundation Model[J]. Journal of Shanghai Jiao Tong University, 2025, 59(1): 60-69.
[1] |
金小凯, 陈锦剑, 廖晨聪. 波浪荷载对单桩承载力影响的水槽模拟试验研究[J]. 上海交通大学学报, 2021, 55(4): 365-371.
doi: 10.16183/j.cnki.jsjtu.2019.268 |
JIN Xiaokai, CHEN Jinjian, LIAO Chencong. Wave flume simulation experiment on influence of wave load on bearing capacity of monopile[J]. Journal of Shanghai Jiao Tong University, 2021, 55(4): 365-371. | |
[2] | 张驰, 赖俊荣, 阮芳伟, 等. 海洋钢管桩发生溜桩的地层条件及桩侧动摩阻力计算方法[J]. 岩土力学, 2022, 43(Sup.2): 355-361. |
ZHANG Chi, LAI Junrong, RUAN Fangwei, et al. Strata condition for steel pipe pile runs and calculation method of dynamic skin friction of pile in ocean engineering[J]. Rock and Soil Mechanics, 2022, 43(Sup.2): 355-361. | |
[3] | HE K P, YE J H. Seismic dynamics of offshore wind turbine-seabed foundation: Insights from a numerical study[J]. Renewable Energy, 2023, 205(2023): 200-221. |
[4] | BASILE F. Torsional response of pile groups[C]// Proceedings of the 11th DFI & EFFC International Conference on Geotechnical Challenges in Urban Regeneration. London, UK: Deep Foundations Institute, 2010. |
[5] | BASACK S, NIMBALKAR S. Numerical solution of single pile subjected to torsional cyclic load[J]. International Journal of Geomechanics, 2017, 17(8): 04017016. |
[6] | GAZETAS G, DOBRY R. Horizontal response of piles in layered soils[J]. Journal of Geotechnical Engineering, ASCE, 1984, 110(1): 20-40. |
[7] | 吴君涛, 王奎华, 孙梵, 等. 水平振动桩周围半无限空间土体受迫振动响应理论解[J]. 振动工程学报, 2020, 33(6): 1272-1281. |
WU Juntao, WANG Kuihua, SUN Fan, et al. Dynamic response of a half-space soil model excited by the known lateral pile vibration[J]. Journal of Vibration Engineering, 2020, 33(6): 1272-1281. | |
[8] | 黄茂松, 边学成, 陈育民, 等. 土动力学与岩土地震工程[J]. 土木工程学报, 2020, 53(8): 64-86. |
HUANG Maosong, BIAN Xuecheng, CHEN Yumin, et al. Soil dynamics and geotechnical earthquake engineering[J]. China Civil Engineering Journal, 2020, 53(8): 64-86. | |
[9] | KONG L G. Behavior of pile groups subjected to torsion[D]. Hong Kong, China: The Hong Kong University of Science and Technology, 2006. |
[10] | NOGAMI T, NOVAK M. Resistance of soil to a horizontally vibrating pile[J]. Earthquake Engineering and Structure Dynamics, 1977, 5(3): 249-261. |
[11] | NOVAK M. Dynamic stiffness and damping of pile[J]. Canndian Geotechnical Journal, 1974, 11(4): 574-598. |
[12] | NOVAK M, NOGAMI T. Soil-pile interaction in horizontal vibration[J]. Earthquake Engineering and Structural Dynamics, 1977, 5(3): 263-281. |
[13] | PASTERNAK P L. Fundamentals of a new method of analyzing structures on an elastic foundation by means of two foundation onstants[M]. Moscow, Russia: Gosudarstvennoe Izdatelstro Liberaturi Po Stroitelstvui Arkhitekture, 1954. |
[14] | FWA T F, SHI X P, TAN S A. Use of Pasternak foundation model in concrete pavement analysis[J]. Journal of Transportation Engineering, 1996, 122(4): 323-328. |
[15] | 戴自航, 王云凤, 卢才金. 水平荷载单桩计算的综合刚度和双参数法杆系有限元数值解[J]. 岩石力学与工程学报, 2016, 35(10): 2115-2123. |
DAI Zihang, WANG Yunfeng, LU Caijin. Numerical solution of link finite element based on composite stiffness and bi-parameter method for computation of laterally loaded single pile[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(10): 2115-2123. | |
[16] | 朱彦鹏, 吴林平, 施多邦, 等. 基于Pasternak地基模型的非线性土抗力-桩身侧向位移曲线在基坑支护桩中的应用[J]. 岩土力学, 2022, 43(9): 2581-2591. |
ZHU Yanpeng, WU Linping, SHI Duobang, et al. Application of nonlinear soil resistance-pile lateral displacement curve based on Pasternak foundation model in foundation pit retaining piles[J]. Rock and Soil Mechanics, 2022, 43(9): 2581-2591. | |
[17] | 江杰, 柴文成, 欧孝夺, 等. 基于Timoshenko-Pasternak 模型的多向受荷桩水平动力响应分析[J]. 岩石力学与工程学报, 2022, 41(1): 172-185. |
JIANG Jie, CHAI Wencheng, OU Xiaoduo, et al. Horizontal dynamic response analysis of multi-directional loaded pile based on Timoshenko-Pasternak model[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(1): 172-185. | |
[18] | 张玲, 岳梢, 赵明华, 等. 基于改进Pasternak地基模型的桩柱式桥墩受力变形分析[J]. 岩土工程学报, 2022, 44(10): 1817-1826. |
ZHANG Ling, YUE Shao, ZHAO Minghua, et al. Analysis of pile-column pier based on modified Pasternak foundation model[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1817-1826. | |
[19] | HU Z H, MCVAY M, BLOOMQUIST D, et al. Influence of torque on lateral capacity of drilled shafts in sands[J]. Journal of Geotechnical and Geoenvironment Engineering, 2006, 132(4): 456-464. |
[20] | 孔令刚, 张利民. 群桩扭转非线性模型[J]. 岩土力学, 2009, 30(8): 2231-2236. |
KONG Linggang, ZHANG Limin. Nonlinear analysis of pile groups subjected to torsion[J]. Rock and Soil Mechanics, 2009, 30(8): 2231-2236. | |
[21] | GEORGIADIS K, SHEIL B. Effect of torsion on the undrained limiting lateral resistance of piles in clay[J]. Géotechnique, 2020, 70(8): 700-710. |
[22] | WU W B, YANG Z J, LIU X, et al. Horizontal dynamic response of pile in unsaturated soil considering its construction disturbance effect[J]. Ocean Engineering, 2022, 245: 110483. |
[23] | TANAHASHI H. Formulas for an infinitely long Bernoulli-Euler beam on the Pasternak model[J]. Journal of the Japanese Geotechnical Society, 2004, 44(5): 109-118. |
[24] | CUI C Y, LIANG Z M, XU C S, et al. Analytical solution for horizontal vibration of end-bearing single pile in radially heterogeneous saturated soil[J]. Applied Mathematical Modelling, 2023, 116: 65-83. |
[25] | 吕冰. 水平振动荷载作用下支盘桩动力特性研究[D]. 洛阳: 河南科技大学, 2015. |
LÜ Bing. Study on dynamic characteristics of squeezed branch pile under horizontal vibration load[D]. Luoyang: Henan University of Science and Technology, 2015. | |
[26] | 邹新军, 徐洞斌, 王亚雄. 近海复杂环境下的H-M-T受荷桩内力位移分析[J]. 防灾减灾工程学报, 2014, 34(6): 736-741. |
ZOU Xinjun, XU Dongbin, WANG Yaxiong. Analysis of piles under H-M-T combined loading in offshore complex environment[J]. Journal of Disaster Prevention and Mitigation Engineering, 2014, 34(6): 736-741. |
[1] | 张源, 李范春, 贾德君. 点阵压气机叶轮的设计与3D打印仿真[J]. 上海交通大学学报, 2021, 55(6): 729-740. |
[2] | 张子新,肖时辉,刘曈葳,黄昕,何人. 新型盾构隧道防水体系工程试验及数值分析[J]. 上海交通大学学报, 2019, 53(6): 688-695. |
[3] | 王洪涛, 孙 钦, 郝富强, 谢承霖, 唐一琛. 水下控制模块下放回收工具丝杠动力源的选择计算[J]. 海洋工程装备与技术, 2019, 6(1): 434-437. |
[4] | 严维锋, 袁则名, 和鹏飞, 牟哲林, 朱胜, 史文专. 东海侧钻超深大位移井钻井关键技术[J]. 海洋工程装备与技术, 2018, 5(3): 174-180. |
[5] | 和鹏飞. 大位移井技术在渤海油田的应用及发展[J]. 海洋工程装备与技术, 2016, 3(6): 361-366. |
[6] | 王飞1, 马建文2, 黄国樑1. 弯扭联合作用下的拖缆运动建模与分析[J]. 上海交通大学学报(自然版), 2012, 46(03): 451-457. |
[7] | 邱一平1, 戚靖骅1, 吴雪萍1, 陈雷2. 大理岩II型断裂规律试验及数值模拟分析[J]. 上海交通大学学报(自然版), 2011, 45(04): 553-560. |
[8] | 张英,姚燕安,查建中. 基于平面连杆机构的主动平衡器 [J]. 上海交通大学学报(自然版), 2010, 44(12): 1727-1734. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 179
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||