上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (1): 48-59.doi: 10.16183/j.cnki.jsjtu.2023.199
熊一帆1, 应宏伟1,2(), 张金红3, 程康4, 李冰河3
收稿日期:
2023-05-18
修回日期:
2023-08-24
接受日期:
2024-05-21
出版日期:
2025-01-28
发布日期:
2025-02-06
通讯作者:
应宏伟,教授,博士生导师;E-mail:作者简介:
熊一帆(1999—),硕士生,从事地下工程方面的研究.
基金资助:
XIONG Yifan1, YING Hongwei1,2(), ZHANG Jinhong3, CHENG Kang4, LI Binghe3
Received:
2023-05-18
Revised:
2023-08-24
Accepted:
2024-05-21
Online:
2025-01-28
Published:
2025-02-06
摘要:
利用PLAXIS 3D软件和软土蠕变模型,建立杭州中心项目超深基坑群B2基坑的三维数值模型,深入分析了时空因素对坑外地表沉降的影响.引入互补误差函数和三折线模型,利用数值结果对既有互补误差函数进行修正,提出了考虑时空效应的地表沉降快速分析方法.结果表明:软黏土蠕变既诱发围护墙的附加侧移从而引起土体沉降,又诱发坑外土体产生不依赖于围护墙侧移的沉降;忽略软土蠕变对预测超深基坑坑外地表沉降的影响不弱于其对墙体侧移的影响;基坑深度和开挖速率相同时,开挖面积直接决定施工时间的长短,从而影响软黏土蠕变诱发的地表沉降.
中图分类号:
熊一帆, 应宏伟, 张金红, 程康, 李冰河. 考虑时空效应的杭州软黏土超深基坑地表沉降分析方法[J]. 上海交通大学学报, 2025, 59(1): 48-59.
XIONG Yifan, YING Hongwei, ZHANG Jinhong, CHENG Kang, LI Binghe. Analysis Method for Ground Settlement Induced by Ultra-Deep Excavation in Hangzhou Soft Clay Considering Time-Space Effect[J]. Journal of Shanghai Jiao Tong University, 2025, 59(1): 48-59.
表2
土体计算参数
本构模型 | 土层 | l/m | γ/(kN·m-3) | c'/kPa | φ'/(°) | λ* | κ* | μ* | |||
---|---|---|---|---|---|---|---|---|---|---|---|
SSC | ②软黏土 | 20.4 | 17.8 | 5 | 25 | 0.06 | 0.006 | 0.002 5 | |||
γ0.7 | m | ||||||||||
HS-Small | ①填土 | 6.5 | 17.0 | 5 | 28 | 4.5 | 3.8 | 22.7 | 79.4 | 0.000 2 | 0.80 |
③粉质黏土 | 13.5 | 19.3 | 25 | 30 | 6.5 | 5.4 | 32.4 | 113.4 | 0.000 2 | 0.80 | |
加固土 | 23.7 | 19.3 | 60 | 25 | 15.0 | 15.0 | 85.0 | 170.0 | 0.002 0 | 0.12 | |
E/MPa | υ | ||||||||||
MC | ④圆砾 | 2.2 | 19.0 | 1 | 18 | 36 | 0.30 | ||||
⑤强风化砂岩 | 6.9 | 21.0 | 30 | 20 | 90 | 0.25 | |||||
⑥中风化砂岩 | 20.5 | 22.0 | 50 | 30 | 3 600 | 0.25 |
[1] |
张抗寒, 陈锦剑, 王建华, 等. 紧邻基坑同步施工下坑间隧道的变形特性[J]. 上海交通大学学报, 2013, 47(10): 1537-1541.
doi: 10.16183/j.cnki.jsjtu.2013.10.009 |
ZHANG Kanghan, CHEN Jinjian, WANG Jianhua, et al. Movement of tunnel between two adjacent concurrent excavations[J]. Journal of Shanghai Jiao Tong University, 2013, 47(10): 1537-1541. | |
[2] |
肖潇, 李明广, 夏小和, 等. 基坑开挖对临近明挖暗埋隧道竖向变形的影响机理[J]. 上海交通大学学报, 2018, 52(11): 1437-1443.
doi: 10.16183/j.cnki.jsjtu.2018.11.004 |
XIAO Xiao, LI Mingguang, XIA Xiaohe, et al. Mechanism analysis of influence of deep excavation on deformation of nearby cut-and-cover tunnel[J]. Journal of Shanghai Jiao Tong University, 2018, 52(11): 1437-1443. | |
[3] |
刘俊城, 谭勇, 张生杰. 地铁车站深基坑开挖变形智能多步预测方法[J]. 上海交通大学学报, 2024, 58(7): 1108-1117.
doi: 10.16183/j.cnki.jsjtu.2022.419 |
LIU Juncheng, TAN Yong, ZHANG Shengjie. Multi-step prediction of excavation deformation of subway station based on intelligent algorithm[J]. Journal of Shanghai Jiao Tong University, 2024, 58(7): 1108-1117. | |
[4] | 王卫东, 徐中华, 王建华. 上海地区深基坑周边地表变形性状实测统计分析[J]. 岩土工程学报, 2011, 33(11): 1659-1666. |
WANG Weidong, XU Zhonghua, WANG Jianhua. Statistical analysis of characteristics of ground surface settlement caused by deep excavations in Shanghai soft soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1659-1666. | |
[5] | 江晓峰, 刘国彬, 张伟立, 等. 基于实测数据的上海地区超深基坑变形特性研究[J]. 岩土工程学报, 2010, 32(Sup.2): 570-573. |
JIANG Xiaofeng, LIU Guobin, ZHANG Weili, et al. Deformation characteristics of ultra-deep foundation pit in Shanghai based on measured data[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(Sup.2): 570-573. | |
[6] | 应宏伟, 杨永文. 杭州深厚软黏土中某深大基坑的性状研究[J]. 岩土工程学报, 2011, 33(12): 1838-1846. |
YING Hongwei, YANG Yongwen. Characteristics of a large and deep soft clay excavation in Hangzhou[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1838-1846. | |
[7] | GONZÁLEZ C, SAGASETA C. Patterns of soil deformations around tunnels. Application to the extension of Madrid Metro[J]. Computers and Geotechnics, 2001, 28(6/7): 445-468. |
[8] | ZHENG C, FRANZA A, JIMENEZ R. Analytical prediction for ground movements due to deep excavations in soils[J]. Tunnelling and Underground Space Technology, 2023, 141: 105316. |
[9] | QIAN J, TONG Y, MU L, et al. A displacement controlled method for evaluating ground settlement induced by excavation in clay[J]. Geomechanics and Engineering, 2020, 20(4): 275. |
[10] | 胡之锋, 陈健, 邱岳峰, 等. 挡墙水平变位诱发地表沉降的显式解析解[J]. 岩土力学, 2018, 39(11): 4165-4175. |
HU Zhifeng, CHEN Jian, QIU Yuefeng, et al. Analytical formula for ground settlement induced by horizontal movement of retaining wall[J]. Rock and Soil Mechanics, 2018, 39(11): 4165-4175. | |
[11] | FAN X, PHOON K K, XU C, et al. Closed-form solution for excavation-induced ground settlement profile in clay[J]. Computers and Geotechnics, 2021, 137: 104266. |
[12] | CHEN H, LI J, YANG C, et al. A theoretical study on ground surface settlement induced by a braced deep excavation[J]. European Journal of Environmental and Civil Engineering, 2022, 26(5): 1897-1916. |
[13] | MU L, HUANG M. Small strain based method for predicting three-dimensional soil displacements induced by braced excavation[J]. Tunnelling and Underground Space Technology, 2016, 52: 12-22. |
[14] | GOH A T C, ZHANG R H, WANG W, et al. Numerical study of the effects of groundwater drawdown on ground settlement for excavation in residual soils[J]. Acta Geotechnica, 2020, 15: 1259-1272. |
[15] | YING H, CHENG K, LIU S, et al. An efficient method for evaluating the ground surface settlement of Hangzhou metro deep basement considering the excavation process[J]. Acta Geotechnica, 2022, 17: 5759-5771. |
[16] | CHENG K, XU R, YING H, et al. Observed performance of a 30.2 m deep-large basement excavation in Hangzhou soft clay[J]. Tunnelling and Underground Space Technology, 2021, 111: 103872. |
[17] | 上海市住房和城乡建设管理委员会. 基坑工程技术标准: DG/TJ 08-61-2018[S]. 上海: 同济大学出版社, 2018. |
Shanghai Housing and Urban-Rural Construction Management Committee. Foundation pit engineering technical standards: DG/TJ 08-61-2018[S]. Shanghai: Tongji University Press, 2018. | |
[18] | 顾晓强, 吴瑞拓, 梁发云, 等. 上海土体小应变硬化模型整套参数取值方法及工程验证[J]. 岩土力学, 2021, 42(3): 833-845. |
GU Xiaoqiang, WU Ruituo, LIANG Fayun, et al. On HSS model parameters for Shanghai soils with engineering verification[J]. Rock and Soil Mechanics, 2021, 42(3): 833-845. | |
[19] | 应宏伟, 孙威, 吕蒙军, 等. 复杂环境下某深厚软土基坑的实测性状研究[J]. 岩土工程学报, 2014, 36 (Sup.2): 424-430. |
YING Hongwei, SUN Wei, LÜ Mengjun, et al. Measured characteristics of a deep soft soil excavation in complex environment[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (Sup.2): 424-430. | |
[20] | 杜金龙, 魏祥, 杨敏. 软土基坑逆作开挖的时效分析[J]. 岩土工程学报, 2008, 30(Sup.1): 395-399. |
DU Jinlong, WEI Xiang, YANG Min. Time effect analysis of top-down excavation of foundation pits in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(Sup.1): 395-399. | |
[21] | 北京金土木软件技术有限公司. PLAXIS岩土工程软件使用指南[M]. 北京: 人民交通出版社, 2010. |
Beijing Jintumu Software Technology Co., Ltd.. PLAXIS geotechnical engineering software usage guide[M]. Beijing: China Communications Press, 2010. | |
[22] | ROBOSKI J, FINNO R J. Distributions of ground movements parallel to deep excavations in clay[J]. Canadian Geotechnical Journal, 2006, 43(1): 43-58. |
[23] | 上海市勘察设计行业协会, 上海市现代建筑设计(集团)有限公司, 上海市建工(集团)总公司. 基坑工程技术规范: DG/TJ 08-61-2010[S]. 上海: [出版者不详], 2010. |
Shanghai Survey and Design Industry Association, Shanghai Modern Architectural Design (Group) Co., Ltd., Shanghai Construction Engineering (Group) Corporation. Foundation pit engineering technical specification: DG/TJ 08-61-2010[S]. Shanghai: [s. n.], 2010. |
[1] | 应宏伟, 姚言, 王奎华, 张昌桔. 双线平行顶管上跨地铁盾构隧道施工环境影响实测分析[J]. 上海交通大学学报, 2023, 57(12): 1639-1647. |
[2] | 周洁, 任君杰. 沿海组合地层人工冻结过程中的水分迁移及变形特性[J]. 上海交通大学学报, 2022, 56(5): 675-683. |
[3] | 李泽垚, 周洁, 田万君, 裴万胜. 地铁变频荷载循环作用下饱和软黏土累积塑性变形[J]. 上海交通大学学报, 2022, 56(4): 454-463. |
[4] | 肖朝昀, 李明广, 王大发, 陈锦剑. 降雨影响下残积土层中深基坑变形特性测试及分析[J]. 上海交通大学学报, 2020, 54(8): 873-880. |
[5] | 郑启宇,夏小和,李明广,张扬清. 深基坑降承压水对墙体变形和地表沉降的影响[J]. 上海交通大学学报, 2020, 54(10): 1094-1100. |
[6] | 范凡, 章红兵, 王建华, 陈锦剑, 张毅鹏. 软土地区分隔型基坑群变形特性实测分析[J]. 上海交通大学学报, 2018, 52(02): 133-140. |
[7] | 孟振, 陈锦剑, 王建华. 基于修正剑桥模型的软黏土中沉桩过程欧拉-拉格朗日耦合模拟分析[J]. 上海交通大学学报, 2017, 51(03): 263-268. |
[8] | 章红兵,范凡,胡昊. 基坑群施工对邻近隧道影响与隧道保护[J]. 上海交通大学学报(自然版), 2016, 50(05): 803-809. |
[9] | 肖立, 张庆贺. 盾构长距离下穿铁路股道引起的地表沉降分析[J]. 上海交通大学学报(自然版), 2011, 45(05): 672-676. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 101
|
|
|||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||