上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (12): 1639-1647.doi: 10.16183/j.cnki.jsjtu.2022.290
所属专题: 《上海交通大学学报》2023年“船舶海洋与建筑工程”专题
收稿日期:
2022-07-25
修回日期:
2022-09-12
接受日期:
2022-09-22
出版日期:
2023-12-28
发布日期:
2023-12-29
通讯作者:
王奎华,教授,博士生导师;E-mail:作者简介:
应宏伟(1971-),教授,博士生导师,主要从事岩土工程的教学和科研工作.
基金资助:
YING Hongwei1,2, YAO Yan1, WANG Kuihua1(), ZHANG Changju3
Received:
2022-07-25
Revised:
2022-09-12
Accepted:
2022-09-22
Online:
2023-12-28
Published:
2023-12-29
摘要:
基于现场实测数据,详尽分析了某粉砂性地层中近距离双线顶管从上方穿越既有运营地铁隧道过程中的环境影响,包括横向地表沉降分布、沉降随时间发展、地铁隧道上浮等规律.研究发现:单线顶管横向地表沉降曲线呈现为“V”形,双线顶管横向地表沉降曲线为不对称“W”形,且后行顶管轴线上方的地面沉降大于先行顶管;后行顶管施工期间,先行顶管轴线上方地面也产生明显沉降.Peck公式在顶管施工引起的地表沉降曲线预测中适用性较好:案例中对于单线顶管,沉降槽宽度参数为0.79,土体损失率为1.6%;对于双线顶管,先行、后行顶管的沉降槽宽度参数分别为0.74和0.58,前者是后者的1.28倍;先行、后行顶管土体损失率分别为2.41%和3.11%,后者是前者的1.29倍.顶管顶进使下卧地铁隧道的纵向产生“W”形竖向位移分布曲线,顶管穿越完成后隧道的上浮存在滞后性;平行顶管上跨施工对下方地铁盾构隧道的纵向影响范围约为4~6倍顶管管径.后行顶管穿越监测断面时产生的瞬时沉降大于先行顶管;采用全方位高压喷射(MJS)工法预加固隧道上方粉砂土时降低了原状土的渗透性,顶管穿越后地面沉降仍将持续一段时间,可采用指数函数描述瞬时沉降发生后沉降随时间的发展规律.
中图分类号:
应宏伟, 姚言, 王奎华, 张昌桔. 双线平行顶管上跨地铁盾构隧道施工环境影响实测分析[J]. 上海交通大学学报, 2023, 57(12): 1639-1647.
YING Hongwei, YAO Yan, WANG Kuihua, ZHANG Changju. Observed Environment Response Caused by Construction of Double-Line Parallel Pipe Jacking Crossing over Metro Shield Tunnels[J]. Journal of Shanghai Jiao Tong University, 2023, 57(12): 1639-1647.
表1
土层物理力学参数
地层编号 | 地层名称 | h/m | w/% | a1-2/ MPa-1 | ES1-2/MPa | 直剪固快 | kh×104/ (cm·s-1) | kv×104/ (cm·s-1) | |
---|---|---|---|---|---|---|---|---|---|
c/kPa | φ/(°) | ||||||||
②-1 | 黏质粉土 | 1.6 | 28.1 | 0.21 | 8.75 | 9.1 | 27.8 | 3.1 | 2.7 |
②-2 | 砂质粉土 | 3.0 | 26.5 | 0.17 | 10.38 | 7.5 | 28.8 | 5.2 | 4.9 |
④-1 | 砂质粉土 | 8.2 | 26.1 | 0.16 | 10.88 | 8.0 | 29.4 | 4.4 | 3.6 |
④-2 | 砂质粉土 | 14.0 | 26.0 | 0.17 | 10.64 | 8.7 | 27.7 | 6.5 | 5.8 |
④-3 | 粉土夹黏性土 | 18.6 | 28.6 | 0.21 | 9.53 | 10.9 | 26.5 | 2.8 | 1.8 |
④-5 | 粉质黏土夹粉土 | 24.5 | 34.5 | 0.43 | 4.60 | 24.6 | 14.3 | — | — |
⑤-1 | 淤泥质黏土 | 33.8 | 44.2 | 0.74 | 3.24 | 11.7 | 9.5 | — | — |
表3
双线顶管地表沉降曲线拟合参数
断面 | Smax,1/mm | Smax,2/mm | i1/m | i2/m | K1 | K2 | η1/% | η2/% | ηavg/% |
---|---|---|---|---|---|---|---|---|---|
DBC-1 | 56.31 | 70.41 | 2.94 | 2.41 | 0.71 | 0.58 | 3.02 | 3.10 | 3.06 |
DBC-2 | 44.6 | 65.34 | 3.17 | 2.28 | 0.77 | 0.55 | 2.58 | 2.72 | 2.65 |
DBC-3 | 49.96 | 51.21 | 2.96 | 2.57 | 0.71 | 0.62 | 2.70 | 2.40 | 2.55 |
DBC-4 | 55.07 | 93.83 | 3.04 | 2.19 | 0.73 | 0.53 | 3.06 | 3.75 | 3.41 |
DBC-5 | 37.31 | 96.44 | 2.94 | 2.39 | 0.71 | 0.58 | 2.00 | 4.21 | 3.11 |
DBC-6 | 28.9 | 68.01 | 2.87 | 2.37 | 0.69 | 0.57 | 1.52 | 2.94 | 2.23 |
DBC-7 | 29.29 | 47.56 | 3.56 | 2.71 | 0.86 | 0.65 | 1.90 | 2.35 | 2.13 |
平均 | 43.06 | 70.4 | 3.07 | 2.42 | 0.74 | 0.58 | 2.41 | 3.11 | 2.76 |
[1] | PECK R B. Deep excavations and tunneling in soft ground[C]// Proceedings of the 7th International Conference of Soil Mechanics and Foundation Engineering. Mexico City, Mexico:[s.n.], 1969: 225-290. |
[2] | O’REILLY M P, NEW B M. Settlements above tunnels in the United Kingdom-Their magnitude and prediction[C]// Proceedings Tunnelling 82. London, UK: Institution of Mining and Metallurgy, 1982: 173-181. |
[3] |
VU M N, BROERE W, BOSCH J W. Volume loss in shallow tunneling[J]. Tunnelling and Underground Space Technology, 2016, 59(10): 77-90.
doi: 10.1016/j.tust.2016.06.011 URL |
[4] | 孙玉永, 周顺华, 宫全美. 软土地区盾构掘进引起的深层位移场分布规律[J]. 岩石力学与工程学报, 2009, 28(3): 500-506. |
SUN Yuyong, ZHOU Shunhua, GONG Quanmei. Distribution of deep displacement field during shield tunneling in soft-soil areas[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(3): 500-506. | |
[5] | 韩煊, 李宁, STANDING J R. Peck公式在我国隧道施工地面变形预测中的适用性分析[J]. 岩土力学, 2007, 28(1): 23-28. |
HAN Xuan, LI Ning, STANDING J R. An adaptability study of Peck equation applied to predicting ground settlements induced by tunneling in China[J]. Rock and Soil Mechanics, 2007, 28(1): 23-28. | |
[6] | 吴昌胜, 朱志铎. 不同直径盾构隧道地层损失率的对比研究[J]. 岩土工程学报, 2018, 40(12): 2257-2265. |
WU Changsheng, ZHU Zhiduo. Comparative study on ground loss ratio due to shield tunnel with different diameters[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2257-2265. | |
[7] | 马可栓. 盾构施工引起地基移动与近邻建筑保护研究[D]. 武汉: 华中科技大学, 2008. |
MA Keshuan. Research on the ground settlement caused by the shield construction and protection[D]. Wuhan: Huazhong University of Science and Technology, 2008. | |
[8] | 丁智, 王凡勇, 魏新江. 软土双线盾构施工地表变形实测分析与预测[J]. 浙江大学学报(工学版), 2019, 53(1): 61-68. |
DING Zhi, WANG Fanyong, WEI Xinjiang. Prediction and analysis of surface deformation caused by twin shield construction in soft soil[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(1): 61-68. | |
[9] | 朱蕾, 黄宏伟. 盾构近距离上穿运营隧道的实测数据分析[J]. 浙江大学学报(工学版), 2010, 44(10): 1962-1966. |
ZHU Lei, HUANG Hongwei. Monitoring data analysis of disturbing effect caused by shield-driven over operating tunnel[J]. Journal of Zhejiang University (Engineering Science), 2010, 44(10): 1962-1966. | |
[10] | 黄德中, 马险峰, 王俊淞, 等. 软土地区盾构上穿越既有隧道的离心模拟研究[J]. 岩土工程学报, 2012, 34(3): 520-527. |
HUANG Dezhong, MA Xianfeng, WANG Junsong, et al. Centrifuge modelling of effects of shield tunnels on existing tunnels in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 520-527. | |
[11] | 黄宏伟, 胡昕. 顶管施工力学效应的数值模拟分析[J]. 岩石力学与工程学报, 2003, 22(3): 400-406. |
HUANG Hongwei, HU Xin. 3D numerical analysis on construction mechanics effect of pipe-jacking[J]. Chinese Journal of Geotechnical Engineering, 2003, 22(3): 400-406. | |
[12] | 魏纲, 吴华君, 陈春来. 顶管施工中土体损失引起的沉降预测[J]. 岩土力学, 2007, 28(2): 359-363. |
WEI Gang, WU Huajun, CHEN Chunlai. Prediction of settlement induced by ground loss during pipe jacking construction[J]. Rock and Soil Mechanics, 2007, 28(2): 359-363. | |
[13] | 周顺华, 廖全燕, 刘建国, 等. 矩形顶管隧道顶进过程的地层损失[J]. 岩石力学与工程学报, 2001, 20(3): 342-345. |
ZHOU Shunhua, LIAO Quanyan, LIU Jianguo, et al. Stratum loss during pipe jacking of rectangle tunnel[J]. Chinese Journal of Geotechnical Engineering, 2001, 20(3): 342-345. | |
[14] | 魏纲, 魏新江, 屠毓敏. 平行顶管施工引起的地面变形实测分析[J]. 岩石力学与工程学报, 2006, 25(Sup.1): 3299-3304. |
WEI Gang, WEI Xinjiang, TU Yumin. Analysis of site monitoring of ground deformation induced by parallel pipe jacking construction[J]. Chinese Journal of Geotechnical Engineering, 2006, 25(Sup.1): 3299-3304. | |
[15] | 张晓清, 张孟喜, 吴应明, 等. 多线叠交盾构隧道近接施工模型试验[J]. 上海交通大学学报, 2015, 49(7): 1040-1045. |
ZHANG Xiaoqing, ZHANG Mengxi, WU Yingming, et al. Model test on approaching construction of multi-line overlapped shield tunneling[J]. Journal of Shanghai Jiao Tong University, 2015, 49(7): 1040-1045. | |
[16] | 林志, 朱合华, 夏才初. 近间距双线大直径泥水盾构施工相互影响研究[J]. 岩土力学, 2006, 27(7): 1181-1186. |
LIN Zhi, ZHU Hehua, XIA Caichu. Study of field monitoring on interaction between twin slurry shield tunnels in close space[J]. Rock and Soil Mechanics, 2006, 27(7): 1181-1186. | |
[17] | 应宏伟, 黄兆江, 葛红斌, 等. 基于分级加载工况的沉降曲线拟合法及工程运用[J]. 东南大学学报(自然科学版), 2021, 51(2): 300-305. |
YING Hongwei, HUANG Zhaojiang, GE Hongbin, et al. Curve fitting method for settlement based on staged loading condition and its engineering application[J]. Journal of Southeast University (Natural science edition), 2021, 51(2): 300-305. | |
[18] | 汤怡新, 刘汉龙, 朱伟. 水泥固化土工程特性试验研究[J]. 岩土工程学报, 2000, 22(5): 549-554. |
TANG Yixin, LIU Hanlong, ZHU Wei. Study on engineering properties of cement-stabilized soil[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(5): 549-554. |
[1] | 肖朝昀, 李明广, 王大发, 陈锦剑. 降雨影响下残积土层中深基坑变形特性测试及分析[J]. 上海交通大学学报, 2020, 54(8): 873-880. |
[2] | 郑启宇,夏小和,李明广,张扬清. 深基坑降承压水对墙体变形和地表沉降的影响[J]. 上海交通大学学报, 2020, 54(10): 1094-1100. |
[3] | 范凡, 章红兵, 王建华, 陈锦剑, 张毅鹏. 软土地区分隔型基坑群变形特性实测分析[J]. 上海交通大学学报, 2018, 52(02): 133-140. |
[4] | 肖立, 张庆贺. 盾构长距离下穿铁路股道引起的地表沉降分析[J]. 上海交通大学学报(自然版), 2011, 45(05): 672-676. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||