上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (8): 1221-1230.doi: 10.16183/j.cnki.jsjtu.2023.173
收稿日期:
2023-05-04
修回日期:
2023-09-11
接受日期:
2023-09-20
出版日期:
2024-08-28
发布日期:
2024-08-27
通讯作者:
周晓军,副教授,博士生导师; E-mail: 作者简介:
毛雯欣(1998-),硕士生,从事设备维护决策研究.
基金资助:
Received:
2023-05-04
Revised:
2023-09-11
Accepted:
2023-09-20
Online:
2024-08-28
Published:
2024-08-27
摘要:
为解决大型热轧生产线日常动态维护和支撑辊定期更换带来的维护需求差异问题,综合考虑长距离条件下的维护资源及停机时间限制,引入维护优先权规则识别部件的组合维护判断次序,构建双可变时间窗规则辨别部件是否维护并区分维护需求,进而建立系统整体动态机会维护模型.实例分析表明,该模型可有效解决维护资源和停机时间限制下大型热轧生产线的差异化维护调度问题,且比传统基于时间窗的模型更具成本优势.
中图分类号:
毛雯欣, 周晓军. 基于优先权与双可变时间窗的大型热轧生产线机会维护建模[J]. 上海交通大学学报, 2024, 58(8): 1221-1230.
MAO Wenxin, ZHOU Xiaojun. Opportunistic Maintenance Modeling of Large-Scale Hot Rolling Production Line Based on Maintenance Priority and Dual Variable Time Window[J]. Journal of Shanghai Jiao Tong University, 2024, 58(8): 1221-1230.
表2
部件维护参数及故障参数
i | j | αi,j | βi,j | θi,j | cD/元 | |||
---|---|---|---|---|---|---|---|---|
1 | 1 | 1.91 | 190.30 | 0.99 | 19 955.75 | 10 022.30 | 63 926.94 | 0.26 |
1 | 2 | 2.11 | 572.81 | 0.99 | 14 660.86 | 7 338.08 | 63 926.94 | 0.29 |
1 | 3 | 3.19 | 262.87 | 0.99 | 19 628.20 | 9 834.12 | 63 926.94 | 0.34 |
2 | 1 | 2.15 | 190.81 | 0.97 | 21 364.43 | 10 778.73 | 63 926.94 | 0.23 |
2 | 2 | 2.89 | 336.95 | 0.97 | 24 905.46 | 12 551.00 | 63 926.94 | 0.30 |
2 | 3 | 2.38 | 298.07 | 0.97 | 11 100.67 | 5 552.24 | 63 926.94 | 0.30 |
3 | 1 | 2.05 | 323.81 | 0.98 | 19 687.53 | 9 845.41 | 63 926.94 | 0.34 |
3 | 2 | 1.40 | 218.42 | 0.98 | 21 586.06 | 10 854.72 | 63 926.94 | 0.33 |
3 | 3 | 2.42 | 226.00 | 0.97 | 16 004.07 | 8 068.35 | 63 926.94 | 0.23 |
3 | 4 | 2.34 | 189.25 | 0.98 | 18 473.28 | 8 274.24 | 63 926.94 | 0.29 |
4 | 1 | 2.44 | 289.29 | 0.98 | 11 235.69 | 8 163.95 | 63 926.94 | 0.26 |
4 | 2 | 2.91 | 450.77 | 0.96 | 7 524.52 | 3 765.91 | 63 926.94 | 0.24 |
4 | 3 | 1.96 | 360.03 | 0.97 | 23 924.34 | 11 962.74 | 63 926.94 | 0.21 |
4 | 4 | 1.65 | 240.31 | 0.98 | 24 208.23 | 12 198.36 | 63 926.94 | 0.29 |
4 | 5 | 2.04 | 352.06 | 0.98 | 11 982.24 | 6 026.53 | 63 926.94 | 0.23 |
5 | 2 | 2.42 | 253.50 | 0.96 | 10 127.18 | 5 139.05 | 63 926.94 | 0.34 |
5 | 3 | 2.18 | 277.35 | 0.99 | 15 932.36 | 8 253.69 | 63 926.94 | 0.32 |
5 | 4 | 2.08 | 244.23 | 0.96 | 20 118.95 | 10 129.69 | 63 926.94 | 0.25 |
6 | 1 | 2.78 | 190.87 | 0.99 | 15 752.26 | 7 950.42 | 63 926.94 | 0.30 |
6 | 2 | 1.90 | 356.04 | 0.99 | 10 034.88 | 5 073.03 | 63 926.94 | 0.36 |
6 | 3 | 3.91 | 239.46 | 0.97 | 8 474.86 | 4 303.24 | 63 926.94 | 0.27 |
表5
停机成本变化时不同策略下的总成本对比
rD | C/元 | ||
---|---|---|---|
策略1 | 策略2 | 策略3 | |
0.5 | 9 620 459.5 | 9 705 047.2 | 9 809 341.9 |
0.8 | 11 137 170.5 | 11 253 346.3 | 13 177 470.9 |
0.9 | 11 645 926.6 | 11 758 861.0 | 11 857 452.1 |
1.1 | 12 450 669.2 | 12 649 852.0 | 12 649 851.9 |
1.2 | 12 836 969.8 | 13 147 182.0 | 13 177 470.9 |
1.3 | 13 182 547.6 | 13 467 639.1 | 13 467 639.1 |
1.4 | 13 692 836.8 | 13 982 316.3 | 14 003 082.2 |
1.5 | 13 974 578.3 | 14 177 837.0 | 14 221 703.6 |
1.6 | 14 529 246.8 | 14 712 756.4 | 14 740 627.2 |
1.7 | 14 872 695.2 | 15 225 633.6 | 15 260 733.4 |
1.8 | 15 225 633.5 | 15 472 867.0 | 15 482 514.8 |
1.9 | 15 668 527.0 | 15 928 027.0 | 16 020 137.9 |
2.0 | 16 004 840.5 | 16 334 781.7 | 16 337 258.5 |
3.0 | 18 962 605.2 | 19 118 940.2 | 19 430 157.4 |
4.0 | 21 386 509.9 | 21 932 994.6 | 22 347 742.4 |
表6
单次预防维护成本及单次小修成本变化时不同策略下的总成本对比
rPM | C/元 | rMR | C/元 | ||||
---|---|---|---|---|---|---|---|
策略1 | 策略2 | 策略3 | 策略1 | 策略2 | 策略3 | ||
0.4 | 10 842 663 | 11 058 172 | 11 076 813 | 0.4 | 7 617 885 | 7 675 420 | 7 773 159 |
0.6 | 11 092 007 | 11 218 433 | 11 289 565 | 0.6 | 9 362 511 | 9 483 791 | 9 532 783 |
0.8 | 11 431 720 | 11 585 273 | 11 585 273 | 0.8 | 10 756 493 | 10 879 263 | 10 896 904 |
1.0 | 11 737 294 | 11 900 250 | 11 951 963 | 1.0 | 11 906 720 | 12 245 530 | 12 331 983 |
1.2 | 11 906 720 | 12 245 530 | 12 331 983 | 1.2 | 13 240 993 | 13 287 997 | 13 501 420 |
1.4 | 12 377 192 | 12 434 377 | 12 434 377 | 1.4 | 14 353 124 | 14 578 590 | 14 631 391 |
1.6 | 12 711 406 | 12 832 599 | 12 892 816 | 1.6 | 15 347 480 | 15 612 128 | 15 612 128 |
1.8 | 12 881 166 | 13 030 062 | 13 030 062 | 1.8 | 16 355 153 | 16 522 962 | 16 634 735 |
2.0 | 13 139 298 | 13 348 537 | 13 348 537 | 2.0 | 17 233 474 | 17 371 955 | 17 602 482 |
[1] | LIM J H, PARK D H. Optimal periodic preventive maintenance schedules with improvement factors depending on number of preventive maintenances[J]. Asia-Pacific Journal of Operational Research, 2007, 24(1): 111-124. |
[2] | PONGPECH J, MURTHY D N P. Optimal periodic preventive maintenance policy for leased equipment[J]. Reliability Engineering & System Safety, 2006, 91(7): 772-777. |
[3] | SHEU S H. A modified block replacement policy with two variables and general random minimal repair cost[J]. Journal of Applied Probability, 1996, 33(2): 557-572. |
[4] | LU Y, SUN L, KANG J, et al. Opportunistic maintenance optimization for offshore wind turbine electrical and electronic system based on rolling horizon approach[J]. Journal of Renewable and Sustainable Energy, 2017, 9(3): 033307. |
[5] | XIA T, XI L, ZHOU X, et al. Dynamic maintenance decision-making for series-parallel manufacturing system based on MAM-MTW methodology[J]. European Journal of Operational Research, 2012, 221(1): 231-240. |
[6] | ZHOU X, LU B. Preventive maintenance scheduling for serial multi-station manufacturing systems with interaction between station reliability and product quality[J]. Computers & Industrial Engineering, 2018, 122: 283-291. |
[7] | SONG S, LI Q, FELDER F A, et al. Integrated optimization of offshore wind farm layout design and turbine opportunistic condition-based maintenance[J]. Computers & Industrial Engineering, 2018, 120: 288-297. |
[8] | DO P, ASSAF R, SCARF P, et al. Modelling and application of condition-based maintenance for a two-component system with stochastic and economic dependencies[J]. Reliability Engineering & System Safety, 2019, 182: 86-97. |
[9] | COLLEDANI M, MAGNANINI M C, TOLIO T. Impact of opportunistic maintenance on manufacturing system performance[J]. CIRP Annals, 2018, 67(1): 499-502. |
[10] | LU B, ZHOU X. Opportunistic preventive maintenance scheduling for serial-parallel multistage manufacturing systems with multiple streams of deterioration[J]. Reliability Engineering & System Safety, 2017, 168: 116-127. |
[11] |
俞梦琦, 史凯龙, 周晓军. 基于双时间窗的多设备串行系统机会维护策略[J]. 上海交通大学学报, 2020, 54(1): 69-75.
doi: 10.16183/j.cnki.jsjtu.2020.01.009 |
YU Mengqi, SHI Kailong, ZHOU Xiaojun. Opportunistic maintenance strategy for multi-unit serial systems based on dual time window[J]. Journal of Shanghai Jiao Tong University, 2020, 54(1): 69-75. | |
[12] | ZHOU X, NING X. Maintenance gravity window based opportunistic maintenance scheduling for multi-unit serial systems with stochastic production waits[J]. Reliability Engineering & System Safety, 2021, 215: 107828. |
[13] | MOSHEIOV G, SARIG A, STRUSEVICH V A, et al. Two-machine flow shop and open shop scheduling problems with a single maintenance window[J]. European Journal of Operational Research, 2018, 271(2): 388-400. |
[14] | YANG L, ZHAO Y, PENG R, MA X. Opportunistic maintenance of production systems subject to random wait time and multiple control limits[J]. Journal of Manufacturing Systems, 2018, 47(4): 12-34. |
[15] | ZHANG C, GAO W, GUO S, et al. Opportunistic maintenance for wind turbines considering imperfect, reliability-based maintenance[J]. Renewable energy, 2017, 103: 606-612. |
[16] | CAVALCA K L. Availability optimization with genetic algorithm[J]. International Journal of Quality & Reliability Management, 2003, 20(7): 847-863. |
[17] | 韩李杰. 考虑备件和维护人力资源的串联系统机会维护[D]. 上海: 上海交通大学, 2016. |
HAN Lijie. Opportunity maintenance of serial system considering spare parts and human resource[D]. Shanghai: Shanghai Jiao Tong University, 2016. | |
[18] | QIN W, ZHUANG Z, LIU Y, et al. Sustainable service oriented equipment maintenance management of steel enterprises using a two-stage optimization approach[J]. Robotics and Computer-Integrated Manufacturing, 2022, 75: 102311. |
[19] | LUO M, WU S, SCARF P. Models of imperfect repair[M]//DE ALMEIDA A T, EKENBERG L, SCARF P, et al. Multicriteria and optimization models for risk, reliability, and maintenance decision analysis. Switzerland: Springer, 2022: 391-402. |
[20] | BALAKRISHNAN N, KATERI M. On the maximum likelihood estimation of parameters of Weibull distribution based on complete and censored data[J]. Statistics & Probability Letters, 2008, 78(17): 2971-2975. |
[1] | 肖常胜, 周晓军, 祝米鑫. 生产调度与可靠性耦合的变工况再制造系统维护建模[J]. 上海交通大学学报, 2024, 58(8): 1211-1220. |
[2] | 贲旭瑞, 周晓军. 考虑下机约束的精轧机组工作辊机会维护建模[J]. 上海交通大学学报, 2023, 57(8): 996-1004. |
[3] | 曹蕾, 安向昕, 夏唐斌, 郑美妹, 奚立峰. k-out-of-n系统机会维护与库存控制多层级优化策略[J]. 上海交通大学学报, 2023, 57(3): 285-296. |
[4] | 宁小涵, 周晓军. 考虑随机生产等待的串行生产系统机会维护建模[J]. 上海交通大学学报, 2021, 55(10): 1281-1290. |
[5] | 杜煜,李雨青,张秀芳,潘尔顺. 考虑广义时间价值的串行退化生产系统维护更新策略[J]. 上海交通大学学报, 2020, 54(5): 465-472. |
[6] | 于文莉,周晓军. 考虑退化交互的多部件系统动态机会维护建模[J]. 上海交通大学学报, 2020, 54(11): 1157-1164. |
[7] | 祝米鑫, 葛亚雄, 周晓军. 动态生产计划下多工序柔性制造系统预防维护决策[J]. 上海交通大学学报, 2020, 54(11): 1124-1133. |
[8] | 俞梦琦,史凯龙,周晓军. 基于双时间窗的多设备串行系统机会维护策略[J]. 上海交通大学学报, 2020, 54(1): 69-75. |
[9] | 郭闻雨,张秀芳,修玉皎,夏唐斌,潘尔顺. 考虑动态性能退化的生产系统预防维护和缓存配置策略[J]. 上海交通大学学报, 2019, 53(9): 1107-1114. |
[10] | 司国锦,夏唐斌,宋亚,奚立峰. 面向租赁服务网络广域运维的3层机会维护调度策略[J]. 上海交通大学学报(自然版), 2019, 53(4): 387-395. |
[11] | 孙博文,郭闻雨,夏唐斌,潘尔顺,奚立峰. 面向串并联生产系统机会维护的产能平衡导向租赁利润优化策略[J]. 上海交通大学学报(自然版), 2019, 53(3): 276-284. |
[12] | 张耀周1,夏唐斌2,陶辛阳2,潘尔顺2,奚立峰2. 面向港口复杂装卸系统的动态机会维护策略[J]. 上海交通大学学报(自然版), 2015, 49(09): 1319-1323. |
[13] | 张晓文,孙小明,蒋祖华,胡家文. 考虑生产线平衡的串-并联生产系统机会维护策略[J]. 上海交通大学学报(自然版), 2015, 49(05): 702-707. |
[14] | TAO Hongyu,ZHOU Binghai. 基于随机退化的串行生产系统机会维护模型[J]. 上海交通大学学报(自然版), 2013, 47(12): 1911-1916. |
[15] | 王桂娜,俞秉昊,潘尔顺,杜世昌. 成组生产条件下考虑学习和遗忘效应及设备维护的调度策略[J]. 上海交通大学学报(自然版), 2013, 47(05): 723-727. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||