上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (4): 449-460.doi: 10.16183/j.cnki.jsjtu.2022.138
收稿日期:
2022-05-03
修回日期:
2022-08-29
接受日期:
2022-08-29
出版日期:
2024-04-28
发布日期:
2024-04-30
通讯作者:
井庆丰,教授;E-mail:jing_nuaa@163.com.
作者简介:
曹冬平(1994-),硕士生,主要研究方向为卫星通信技术.
基金资助:
CAO Dongping, JING Qingfeng(), ZHONG Weizhi
Received:
2022-05-03
Revised:
2022-08-29
Accepted:
2022-08-29
Online:
2024-04-28
Published:
2024-04-30
摘要:
在空间探测任务中,飞行器会受到机械冲击、跟踪噪声等因素的影响发生角微振动,使天线指向误差恒不为0,从而影响通信链路.针对典型的指向误差单一分布模型如高斯分布、瑞利分布和莱斯分布忽略多种误差源共同影响的缺点,提出指向误差混合分布模型,将多种误差源同时考虑在内,极大地提高了模型的准确性.首先,根据多个空间飞行器奥林巴斯通信卫星 OLYMPUS、工程测试卫星ETS-VI、光学轨道间通信工程试验卫星OICETS和量子科学实验卫星MICIUS角微振动信号的功率谱密度拟合指向误差信号.然后,对比单一分布模型和混合分布模型与指向误差拟合信号的确定系数R2,确定最优分布模型.结果表明:由高斯分布和莱斯分布组成的混合分布模型拟合度最高.以OLYMPUS飞行器为例,高斯-莱斯混合分布模型的拟合度比单一分布模型中的瑞利模型提高27.44%,误比特率偏差降低2.87 dB.
中图分类号:
曹冬平, 井庆丰, 仲伟志. 空间飞行器的指向误差混合分布模型[J]. 上海交通大学学报, 2024, 58(4): 449-460.
CAO Dongping, JING Qingfeng, ZHONG Weizhi. A Mixed Distribution Model of Pointing Error of Aircraft[J]. Journal of Shanghai Jiao Tong University, 2024, 58(4): 449-460.
表7
不同指向误差模型与指向误差拟合信号之间的BER偏差
飞行器 | 模型 | BER | 偏差/dB | ||||||
---|---|---|---|---|---|---|---|---|---|
rSNR=0 | rSNR=5 dB | rSNR=10 dB | rSNR=15 dB | rSNR=20 dB | rSNR=25 dB | rSNR=30 dB | |||
OLYMPUS | 高斯-莱斯 | 0.04 | 0.03 | 0.14 | 0.35 | 0.43 | 0.49 | 0.55 | 0.35 |
高斯-瑞利 | 0.02 | 0.09 | 0.54 | 1.70 | 2.47 | 2.69 | 2.86 | 1.88 | |
高斯 | 0.00 | 0.14 | 0.54 | 1.79 | 2.72 | 3.01 | 3.08 | 2.05 | |
莱斯 | 0.05 | 0.12 | 0.76 | 2.56 | 3.88 | 4.29 | 4.18 | 2.88 | |
瑞利 | 0.03 | 0.20 | 0.70 | 2.65 | 4.06 | 4.75 | 5.08 | 3.22 | |
ETS-VI | 高斯-莱斯 | 0.05 | 0.04 | 0.08 | 0.06 | 0.02 | 0.03 | 0.01 | 0.05 |
高斯-瑞利 | 0.06 | 0.05 | 0.04 | 0.04 | 0.07 | 0.11 | 0.13 | 0.08 | |
高斯 | 0.22 | 0.47 | 0.69 | 0.72 | 0.72 | 0.70 | 0.70 | 0.63 | |
莱斯 | 0.02 | 0.21 | 0.32 | 0.35 | 0.35 | 0.33 | 0.33 | 0.30 | |
瑞利 | 0.02 | 0.16 | 0.28 | 0.29 | 0.26 | 0.23 | 0.25 | 0.23 | |
OICETS | 高斯-莱斯 | 0.03 | 0.03 | 0.04 | 0.08 | 0.10 | 0.10 | 0.13 | 0.08 |
高斯-瑞利 | 0.06 | 0.06 | 0.07 | 0.12 | 0.14 | 0.15 | 0.18 | 0.12 | |
高斯 | 0.31 | 0.59 | 0.81 | 0.88 | 0.90 | 0.92 | 0.89 | 0.79 | |
莱斯 | 0.16 | 0.40 | 0.55 | 0.57 | 0.55 | 0.58 | 0.55 | 0.50 | |
瑞利 | 0.15 | 0.35 | 0.50 | 0.51 | 0.49 | 0.49 | 0.47 | 0.44 | |
MICIUS | 高斯-莱斯 | 0.01 | 0.04 | 0.08 | 0.82 | 2.48 | 0.63 | 1.65 | 1.19 |
高斯-瑞利 | 0.02 | 0.05 | 0.04 | 1.07 | 3.98 | 1.21 | 2.48 | 1.87 | |
高斯 | 0.00 | 0.02 | 0.12 | 0.92 | 3.92 | 4.54 | 1.14 | 2.33 | |
莱斯 | 0.00 | 0.07 | 0.13 | 1.63 | 8.69 | 5.68 | 1.14 | 4.00 | |
瑞利 | 0.02 | 0.03 | 0.15 | 1.56 | 8.15 | 4.89 | 1.14 | 3.67 |
[1] | GHALI F, FASSI B, DRIZ S. Pointing error angle effect on the performance of 10 Gbps ultra-long satellite optical wireless communication[C]// 2021 Palestinian International Conference on Information and Communication Technology. Gaza, Palestine: IEEE, 2021: 88-91. |
[2] |
FARID A A, HRANILOVIC S. Outage capacity optimization for free-space optical links with pointing errors[J]. Journal of Lightwave Technology, 2007, 25(7): 1702-1710.
doi: 10.1109/JLT.2007.899174 URL |
[3] |
JURADO-NAVAS A, GARRIDO-BALSELLS J M, PARIS J F, et al. Impact of pointing errors on the performance of generalized atmospheric optical channels[J]. Optics Express, 2012, 20(11): 12550-12562.
doi: 10.1364/OE.20.012550 URL |
[4] |
刘锡国, 刘敏, 毛忠阳, 等. 指向误差下高斯光束几何衰减模型分析[J]. 电子学报, 2021, 49(10): 1893-1899.
doi: 10.12263/DZXB.20210285 |
LIU Xiguo, LIU Min, MAO Zhongyang, et al. Analysis of geometric attenuation model of Gaussian beam under pointing error[J]. Acta Electronica Sinica, 2021, 49(10): 1893-1899.
doi: 10.12263/DZXB.20210285 |
|
[5] |
GAPPMAIR W, HRANILOVIC S, LEITGEB E. OOK performance for terrestrial FSO links in turbulent atmosphere with pointing errors modeled by hoyt distributions[J]. IEEE Communications Letters, 2011, 15(8): 875-877.
doi: 10.1109/LCOMM.2011.062911.102083 URL |
[6] |
ALQUWAIEE H, YANG H C, ALOUINI M S. On the asymptotic capacity of dual-aperture FSO systems with generalized pointing error model[J]. IEEE Transactions on Wireless Communications, 2016, 15(9): 6502-6512.
doi: 10.1109/TWC.2016.2585486 URL |
[7] | BOLUDA-RUIZ R, GARCÍA-ZAMBRANA A, CASTILLO-VÁZQUEZ B, et al. On the effect of correlated sways on generalized misalignment fading for terrestrial FSO links[J]. IEEE Photonics Journal, 2017, 9(3): 1-14. |
[8] |
ARNON S, KOPEIKA N S. Laser satellite communication network-vibration effect and possible solutions[J]. Proceedings of the IEEE, 1997, 85(10): 1646-1661.
doi: 10.1109/5.640772 URL |
[9] | 王进. 空间光通信ATP跟瞄误差分析及控制[D]. 成都: 电子科技大学, 2006. |
WANG Jin. Analysis and control of ATP tracking error in space optical communication[D]. Chengdu: University of Electronic Science and Technology of China, 2006. | |
[10] | TRENT V, GREENE M, HUNG S. Precision pointing error analysis in a satellite optical communication optical system[C]// [1990] Proceedings. The Twenty-Second Southeastern Symposium on System Theory. Cookeville, USA: IEEE, 1990: 190-194. |
[11] | ARNON S. Minimization of outage probability of WiMAX link supported by laser link between a high-altitude platform and a satellite[J]. Journal of the Optical Society of America A, Optics, Image Science, & Vision, 2009, 26(7): 1545-1552. |
[12] | POLISHUK A, ARNON S. Optimization of a laser satellite communication system with an optical preamplifier[J]. Journal of the Optical Society of America A, Optics, Image Science, & Vision, 2004, 21(7): 1307-1315. |
[13] | TOYOSHIMA M, TAKAYAMA Y, KUNIMORI H, et al. In-orbit measurements of spacecraft microvibrations for satellite laser communication links[J]. Optical Engineering, 2010, 49(8): 083604. |
[14] | WITTIG M E, VAN HOLTZ L, TUNBRIDGE D E L, et al. In-orbit measurements of microaccelerations of ESA’s communication satellite Olympus[C]// OE/LASE’90. Proc SPIE 1218, Free-Space Laser Communication Technologies II. Los Angeles, USA: SPIE, 1990: 205-214. |
[15] |
TOYOSHIMA M, ARAKI K. In-orbit measurements of short term attitude and vibrational environment on the Engineering Test Satellite VI using laser communication equipment[J]. Optical Engineering, 2001, 40(5): 827-832.
doi: 10.1117/1.1355976 URL |
[16] |
WANG X, LI C K, JIA J J, et al. Angular micro-vibration of the Micius satellite measured by an optical sensor and the method for its suppression[J]. Applied Optics, 2021, 60(7): 1881-1887.
doi: 10.1364/AO.416811 URL |
[17] | 陈纯毅, 杨华民, 佟首峰, 等. 空间光通信卫星平台振动实时模拟[J]. 系统仿真学报, 2007, 19(16): 3834-3837. |
CHEN Chunyi, YANG Huamin, TONG Shoufeng, et al. Real-time simulation of satellite-platform vibration of space optical communication[J]. Journal of System Simulation, 2007, 19(16): 3834-3837. | |
[18] | 罗文嘉. 星间激光通信终端控制系统设计及其性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
LUO Wenjia. Design and performance analysis of the terminal control system for inter-satellite laser communication[D]. Harbin: Harbin Institute of Technology, 2016. | |
[19] | 王小英, 陈常龙, 尹俊平. 正态分布和瑞利分布混合情形下的参数估计及分类问题[J]. 数学建模及其应用, 2016, 5(3): 25-30. |
WANG Xiaoying, CHEN Changlong, YIN Junping. The parameter estimation and classification under mixture model of normal and Rayleigh distribution[J]. Mathematical Modeling & Its Applications, 2016, 5(3): 25-30. | |
[20] |
胡耀金, 卞鸿巍, 王荣颖, 等. 基于高斯混合模型的光纤罗经误差概率分布建模[J]. 系统工程与电子技术, 2021, 43(6): 1644-1650.
doi: 10.12305/j.issn.1001-506X.2021.06.22 |
HU Yaojin, BIAN Hongwei, WANG Rongying, et al. Modeling of error probability distribution of fiber-optic gyrocompass based on Gaussian mixture model[J]. Systems Engineering & Electronics, 2021, 43(6): 1644-1650. | |
[21] |
TEKBıYıK K, EKTI A R, KURT G K, et al. Modeling and analysis of short distance sub-terahertz communication channel via mixture of gamma distribution[J]. IEEE Transactions on Vehicular Technology, 2021, 70(4): 2945-2954.
doi: 10.1109/TVT.2021.3063209 URL |
[22] | 王福昌, 曹慧荣, 朱红霞. 经典最小二乘与全最小二乘法及其参数估计[J]. 统计与决策, 2009(1): 16-17. |
WANG Fuchang, CAO Huirong, ZHU Hongxia. Classical least squares and total least squares and their parameter estimation[J]. Statistics & Decision, 2009(1): 16-17. | |
[23] | LI X, LIU Y F, WANG J F, et al. Influence of pointing error and detector noise on the bit error rate performance in ground-to-satellite laser uplink communication system[C]// 2017 3rd IEEE International Conference on Computer & Communications. Chengdu, China: IEEE, 2017: 240-243. |
[24] | 张秉华, 张守辉. 光电成像跟踪系统[M]. 成都: 电子科技大学出版社, 2003. |
ZHANG Binghua, ZHANG Shouhui. Photoelectric imaging tracking system[M]. Chengdu: Chengdu University of Electronic Science and Technology Press, 2003. | |
[25] | BARO M, CONIJN E, DANNENBERG J, et al. Apportionment and analysis of satellite pointing performance: Illustrative use case of space systems engineering[C]// IEEE International Symposium on Systems Engineering. Vienna, Austria: IEEE, 2017: 1-6. |
[26] | MADNI A, BRADLEY N, CERVANTES D, et al. Pointing error budget development and methodology on the psyche project[C]// 2021 IEEE Aerospace Conference (50100). Big Sky, USA: IEEE, 2021: 1-18. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||