上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (4): 438-448.doi: 10.16183/j.cnki.jsjtu.2022.371
骆曼箬1, 李绍良2, 黄艺明1, 张弛1, 吴招才3, 刘华1()
收稿日期:
2022-09-23
修回日期:
2022-12-11
接受日期:
2022-12-21
出版日期:
2024-04-28
发布日期:
2024-04-30
通讯作者:
刘 华,副教授;E-mail:liuyuhua@sjtu.edu.cn.
作者简介:
骆曼箬(1997-),硕士生,从事VCSEL激光研究.
基金资助:
LUO Manruo1, LI Shaoliang2, HUANG Yiming1, ZHANG Chi1, WU Zhaocai3, LIU Hua1()
Received:
2022-09-23
Revised:
2022-12-11
Accepted:
2022-12-21
Online:
2024-04-28
Published:
2024-04-30
摘要:
针对光泵磁力仪(OPM)对小型化、低功耗以及激光光源波长稳定性的要求,提出一套垂直腔面发射激光器激光波长锁定控制方案.所提基于多普勒吸收的光反馈波长锁定方案以 133Cs 原子D1线Fg = 4→Fe = 3超精细能级跃迁波长为参考波长,OPM的原子蒸汽气室同时作为波长锁定的工作气室,无需任何额外装置即可将激光波长锁定在该D1线跃迁波长.使用数字比例积分微分控制与模糊控制算法进行激光的温度控制,使温度波动在 ±0.005 ℃ 内;采用基于电流镜的激光电流驱动方案,使电流波动在±50 nA内,为激光波长锁定提供了良好的硬件基础.最后,在实验室环境下实现OPM长达2 h的稳定信号输出.
中图分类号:
骆曼箬, 李绍良, 黄艺明, 张弛, 吴招才, 刘华. 光泵磁力仪中垂直腔面发射激光器激光波长锁定[J]. 上海交通大学学报, 2024, 58(4): 438-448.
LUO Manruo, LI Shaoliang, HUANG Yiming, ZHANG Chi, WU Zhaocai, LIU Hua. Wavelength Locking of Vertical-Cavity Surface-Emitting Laser in Optically Pumped Magnetometer[J]. Journal of Shanghai Jiao Tong University, 2024, 58(4): 438-448.
[1] |
GUO Y H, WAN S G, SUN X G, et al. Compact, high-sensitivity atomic magnetometer utilizing the light-narrowing effect and in-phase excitation[J]. Applied Optics, 2019, 58(4): 734-738.
doi: 10.1364/AO.58.000734 URL |
[2] | JIA Y C, LIU Z C, CHAI Z, et al. The optimization and stabilization of pump light frequency in the minimized atomic magnetometer[J]. IEEE Transactions on Instrumentation & Measurement, 2021, 70: 1-9. |
[3] | ZHANG K, LUO Z H, TANG F, et al. Experimental optimization of atomic magnetometer in nuclear magnetic resonance gyroscope[J]. Japanese Journal of Applied Physics, 2020, 59(3): 030907. |
[4] |
XING B Z, SUN C, LIU Z A, et al. Probe noise characteristics of the spin-exchange relaxation-free (SERF) magnetometer[J]. Optics Express, 2021, 29(4): 5055-5067.
doi: 10.1364/OE.416797 pmid: 33726048 |
[5] | WANG Z, PENG X, ZHANG R, et al. Single-species atomic comagnetometer based on Rb87 atoms[J]. Physical Review Letters, 2020, 124(19): 193002. |
[6] | YAN Y G, LIU G, LIN H X, et al. VCSEL frequency stabilization for optically pumped magnetometers[J]. Chinese Optics Letters, 2021, 19(12): 121407. |
[7] | YAO Y J, ZOU C W, YU H Y, et al. The developing condition analysis of semiconductor laser frequency stabilization technology[J]. Journal of Semiconductors, 2018, 39(11): 114004. |
[8] | 庄铭今, 范晓婷, 王天顺, 等. 原子陀螺仪用激光稳频技术进展与趋势分析[J]. 激光杂志, 2021, 42(6): 1-6. |
ZHUANG Mingjin, FAN Xiaoting, WANG Tianshun, et al. Progress and trend analysis of laser frequency stabilization technology for atomic gyroscopes[J]. Laser Journal, 2021, 42(6): 1-6. | |
[9] |
XIE J C, WANG J Q, WANG Z B, et al. Infrared laser locking to a rubidium saturated absorption spectrum via a photonic chip frequency doubler[J]. Optics Letters, 2019, 44(5): 1150-1153.
doi: 10.1364/OL.44.001150 pmid: 30821735 |
[10] | TALKER E, ARORA P, ZEKTZER R, et al. Demonstration of dichroic atomic vapor laser lock in micro fabricated vapor cell using light induced atomic desorption[C]// Conference on Lasers and Electro-Optics. San Jose, Washington, D. C., USA: OSA, 2019. |
[11] |
SHANG H S, ZHANG T Y, MIAO J X, et al. Laser with 10-13 short-term instability for compact optically pumped cesium beam atomic clock[J]. Optics Express, 2020, 28(5): 6868-6880.
doi: 10.1364/OE.381147 URL |
[12] | XU Z Y, PENG X X, LI L H, et al. Modulation transfer spectroscopy for frequency stabilization of 852 nm DBR diode lasers[J]. Laser Physics, 2020, 30(2): 025701. |
[13] | 董海峰, 郭军, 张海洋, 等. 用于铯原子磁力仪的双AOM激光稳频系统[J]. 仪器仪表学报, 2020, 41(10): 129-135. |
DONG Haifeng, GUO Jun, ZHANG Haiyang, et al. Double AOM laser frequency stabilization system for cesium atomic magnetometer[J]. Chinese Journal of Scientific Instrument, 2020, 41(10): 129-135. | |
[14] | 戴维涵, 代彦军, 张鹏, 等. 半导体制冷元件特性参数测量及选用[J]. 上海交通大学学报, 2004, 38(10): 1669-1672. |
DAI Weihan, DAI Yanjun, ZHANG Peng, et al. Measurement for the characteristic parameters and selection of thermoelectric cooling modules[J]. Journal of Shanghai Jiao Tong University, 2004, 38(10): 1669-1672. | |
[15] | 李欣怡, 李秀飞, 全伟. 基于F-P腔的激光频率稳定传递方法[J]. 北京航空航天大学学报, 2019, 45(4): 841-846. |
LI Xinyi, LI Xiufei, QUAN Wei. Laser frequency stabilization transmission method based on an F-P cavity[J]. Journal of Beijing University of Aeronautics & Astronautics, 2019, 45(4): 841-846. | |
[16] |
陈大勇, 廉吉庆, 翟浩. CPT原子钟VCSEL波长锁定环路的设计与实现[J]. 原子能科学技术, 2017, 51(6): 1140-1144.
doi: 10.7538/yzk.2017.51.06.1140 |
CHEN Dayong, LIAN Jiqing, ZHAI Hao. Design and realization of VCSEL wavelength locked loop of CPT atomic clock[J]. Atomic Energy Science & Technology, 2017, 51(6): 1140-1144. | |
[17] | 程前, 邓华秋. 半导体激光器驱动电路及温控系统设计[J]. 电子器件, 2019, 42(5): 1185-1189. |
CHENG Qian, DENG Huaqiu. Design of Driving circuit and temperature control system for semiconductor laser[J]. Chinese Journal of Electron Devices, 2019, 42(5): 1185-1189. | |
[18] | 缪存孝, 邢国柱, 刘建丰, 等. 高精度激光器电流驱动与交流温控系统设计[J]. 红外与激光工程, 2019, 48(9): 0905004. |
MIAO Cunxiao, XING Guozhu, LIU Jianfeng, et al. Design of current drive and alternating current temperature control system for high-precision laser[J]. Infrared & Laser Engineering, 2019, 48(9): 0905004. | |
[19] | 吴栋. 可调谐窄线宽半导体激光器驱动设计[D]. 深圳: 深圳大学, 2017. |
WU Dong. Driving design of tunable narrow linewidth semiconductor laser driver[D]. Shenzhen: Shenzhen University, 2017. | |
[20] | 范兴龙, 王彪, 许玥, 等. 用于CO2气体检测的 VCSEL 激光器温控系统设计[J]. 激光杂志, 2018, 39(11): 18-21. |
FAN Xinglong, WANG Biao, XU Yue, et al. Design of temperature controller for VCSEL laser used in CO2 gas detection[J]. Laser Journal, 2018, 39(11): 18-21. | |
[21] | 田亚玲, 李创社, 张朝阳. 高稳定度半导体激光器电源[J]. 应用激光, 2020, 40(4): 740-744. |
TIAN Yaling, LI Chuangshe, ZHANG Chaoyang. High-stability power for semiconductor lasers[J]. Applied Laser, 2020, 40(4): 740-744. | |
[22] | 胡慧琴, 李少远. 模糊控制系统的解析结构与鲁棒性分析[J]. 上海交通大学学报, 2005, 39(12): 2029-2033. |
HU Huiqin, LI Shaoyuan. An analytical study on structure and robustness of fuzzy control systems[J]. Journal of Shanghai Jiao Tong University, 2005, 39(12): 2029-2033. | |
[23] | 张科. 基于热原子系综的精密测量[D]. 绵阳: 中国工程物理研究院, 2019. |
ZHANG Ke. Precision measurement based on the thermal atomic ensemble[D]. Mianyang: China Academy of Engineering Physics, 2019. | |
[24] | 张开放. 面向原子光学器件的VCSEL激光器驱动电路设计及激光稳频[D]. 太原: 中北大学, 2020. |
ZHANG Kaifang. Design of VCSEL laser drive circuit for atomic optical devices and laser frequency stabilization[D]. Taiyuan: North University of China, 2020. | |
[25] | 李雪. 垂直腔面发射激光器的模式调控与器件研制[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2022. |
LI Xue. Investigations on mode modulation and device fabrication of vertical cavity surface emitting lasers[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2022. | |
[26] | SHAH V. Method for stabilizing atomic devices: US 20180219353[P]. 2018-08-02 [2022-09-15]. |
[27] |
LU F F, HOU X K, WANG X, et al. Analyzing and measuring the diode laser’s linewidth affected by the driving current’s white noise[J]. Josa B, 2022, 39(9): 2450-2456.
doi: 10.1364/JOSAB.460608 URL |
[28] | 韩宇晶, 严祥安, 邓琳星, 等. 铷原子超精细谱线的强度差异机理研究[J]. 西北师范大学学报(自然科学版), 2021, 57(2): 41-47. |
HAN Yujing, YAN Xiang’an, DENG Linxing, et al. Study on intensity difference mechanism of rubidium atom hyperfine spectra[J]. Journal of Northwest Normal University (Natural Science), 2021, 57(2): 41-47. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||