上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (9): 1256-1261.doi: 10.16183/j.cnki.jsjtu.2021.192

• 机械与动力工程 • 上一篇    下一篇

基于CNN-RNN组合模型的办公建筑能耗预测

曾国治1, 魏子清1, 岳宝2, 丁云霄2, 郑春元2, 翟晓强1()   

  1. 1.上海交通大学 机械与动力工程学院,上海 200240
    2.广东美的暖通设备有限公司,广东 佛山 528311
  • 收稿日期:2021-05-23 出版日期:2022-09-28 发布日期:2022-10-09
  • 通讯作者: 翟晓强 E-mail:xqzhai@sjtu.edu.cn
  • 作者简介:曾国治(1998-),男,四川省泸州市人,硕士生,主要从事智慧建筑与建筑节能研究.

Energy Consumption Prediction of Office Buildings Based on CNN-RNN Combined Model

ZENG Guozhi1, WEI Ziqing1, YUE Bao2, DING Yunxiao2, ZHENG Chunyuan2, ZHAI Xiaoqiang1()   

  1. 1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2. Guangdong Midea HVAC Equipment Co., Ltd., Foshan 528311, Guangdong, China
  • Received:2021-05-23 Online:2022-09-28 Published:2022-10-09
  • Contact: ZHAI Xiaoqiang E-mail:xqzhai@sjtu.edu.cn

摘要:

为准确反映办公建筑的运行特性,利用卷积神经网络(CNN)良好的特征提取能力与循环神经网络(RNN)良好的时序学习能力,提出用于预测办公建筑能耗的CNN-RNN组合模型,并对应设计了适用于深度学习模型的二维矩阵数据输入结构.案例分析结果表明,相较于简单循环神经网络和长短期记忆网络,CNN-RNN组合模型的预测精度与计算效率均显著提升,模型泛化性好.

关键词: 建筑能耗预测, 卷积神经网络, 循环神经网络, 深度学习

Abstract:

In order to accurately reflect the operation characteristics of office buildings, a convolutional neural network(CNN)-recurrent neural network(RNN)combined model for energy consumption prediction of office buildings is proposed by using the good feature extraction ability of CNN and the good time series learning ability of RNN. Besides, a two-dimensional matrix data input structure suitable for the deep learning model is designed. The case study results show that compared with the simple recurrent neural network and long short term memory network, both the prediction accuracy and computational efficiency of CNN-RNN combined model are significantly improved, and the generalization of the model is also good.

Key words: prediction of building energy consumption, convolutional neural network (CNN), recurrent neural network(RNN), deep learning

中图分类号: