上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (4): 474-485.doi: 10.16183/j.cnki.jsjtu.2021.067
冯国辉1,2,3, 徐兴4, 侯世磊5, 范润东6, 杨开放1, 管凌霄3, 徐长节1,3,7,8()
收稿日期:
2021-03-03
出版日期:
2022-04-28
发布日期:
2022-05-07
通讯作者:
徐长节
E-mail:xucj@zju.edu.cn
作者简介:
冯国辉(1996-),男,安徽省合肥市人,博士生,主要从事土与结构相互作用方面研究.
基金资助:
FENG Guohui1,2,3, XU Xing4, HOU Shilei5, FAN Rundong6, YANG Kaifang1, GUAN Lingxiao3, XU Changjie1,3,7,8()
Received:
2021-03-03
Online:
2022-04-28
Published:
2022-05-07
Contact:
XU Changjie
E-mail:xucj@zju.edu.cn
摘要:
基坑开挖导致的土体卸载作用会引起邻近下卧既有隧道隆起变形,甚至会干扰隧道的正常运营.提出了一种基坑开挖引起下卧隧道纵向变形的简化计算方法,将隧道简化成无限长Euler-Bernoulli梁搁置在三参数的Kerr地基模型,提出了剪切层弯矩的计算假设,利用有限差分法并结合隧道两端的边界条件得到隧道纵向变形差分解.结果表明:与既有文献中有限元数据和实测数据对比,证明了Kerr地基模型的准确性;与将隧道简化成Euler-Bernoulli梁搁置在Pasternak地基模型相比,Kerr地基模型更具有优越性.地基模量、隧道埋深的增大会引起隧道纵向位移及内力的减小;隧道刚度的增大会引起隧道纵向位移的减小但会引起隧道内力的增大.
中图分类号:
冯国辉, 徐兴, 侯世磊, 范润东, 杨开放, 管凌霄, 徐长节. 基于Kerr地基模型的基坑开挖引起下卧既有隧道受力变形[J]. 上海交通大学学报, 2022, 56(4): 474-485.
FENG Guohui, XU Xing, HOU Shilei, FAN Rundong, YANG Kaifang, GUAN Lingxiao, XU Changjie. Deflections of Adjacent Underground Tunnel Induced by Excavation Based on Kerr Foundation Model[J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 474-485.
[1] |
ZHANG X M, OU X F, YANG J S, et al. Deformation response of an existing tunnel to upper excavation of foundation pit and associated dewatering[J]. International Journal of Geomechanics, 2017, 17(4): 04016112.
doi: 10.1061/(ASCE)GM.1943-5622.0000814 URL |
[2] | 陈仁朋, 孟凡衍, 李忠超, 等. 邻近深基坑地铁隧道过大位移及保护措施[J]. 浙江大学学报(工学版), 2016, 50(5): 856-863. |
CHEN Renpeng, MENG Fanyan, LI Zhongchao, et al. Considerable displacement and protective measures for metro tunnels adjacent deep excavation[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(5): 856-863. | |
[3] |
YONG T, YE L. Responses of shallowly buried pipelines to adjacent deep excavations in Shanghai soft ground[J]. Journal of Pipeline Systems Engineering and Practice, 2018, 9(2): 05018002.
doi: 10.1061/(ASCE)PS.1949-1204.0000310 URL |
[4] |
ZHENG G, YANG X Y, ZHOU H Z, et al. A simplified prediction method for evaluating tunnel displacement induced by laterally adjacent excavations[J]. Computers and Geotechnics, 2018, 95: 119-128.
doi: 10.1016/j.compgeo.2017.10.006 URL |
[5] |
ZHENG G, YANG X Y, ZHOU H Z, et al. Reply to the discussion on “A simplified prediction method for evaluating tunnel displacement induced by laterally adjacent excavations” by Far et al[J]. Computers and Geotechnics, 2019, 109: 297.
doi: 10.1016/j.compgeo.2019.01.015 URL |
[6] | 黄宏伟, 黄栩, SCHWEIGER F H. 基坑开挖对下卧运营盾构隧道影响的数值模拟研究[J]. 土木工程学报, 2012, 45(3): 182-189. |
HUANG Hongwei, HUANG Xu, SCHWEIGER F H. Numerical analysis of the influence of deep excavation on underneath existing road tunnel[J]. China Civil Engineering Journal, 2012, 45(3): 182-189. | |
[7] | WEN X, PANG C R. Influence of foundation pit excavation on existing shield tunnel and its protection range[J]. Applied Mechanics and Materials, 2014,580- 583: 1258-1263. |
[8] | ZHENG G, WEI S W. Numerical analyses of influence of overlying pit excavation on existing tunnels[J]. Journal of Central South University of Technology, 2008, 15(2): 69-75. |
[9] |
CHEN R P, MENG F Y, LI Z C, et al. Investigation of response of metro tunnels due to adjacent large excavation and protective measures in soft soils[J]. Tunnelling and Underground Space Technology, 2016, 58: 224-235.
doi: 10.1016/j.tust.2016.06.002 URL |
[10] |
LI M G, CHEN J J, WANG J H, et al. Comparative study of construction methods for deep excavations above shield tunnels[J]. Tunnelling and Underground Space Technology, 2018, 71: 329-339.
doi: 10.1016/j.tust.2017.09.014 URL |
[11] |
NG C W W, SUN H S, LEI G H, et al. Ability of three different soil constitutive models to predict a tunnel’s response to basement excavation[J]. Canadian Geotechnical Journal, 2015, 52(11): 1685-1698.
doi: 10.1139/cgj-2014-0361 URL |
[12] |
NG C W W, SHI J W, MAŠÍN D, et al. Influence of sand density and retaining wall stiffness on three-dimensional responses of tunnel to basement excavation[J]. Canadian Geotechnical Journal, 2015, 52(11): 1811-1829.
doi: 10.1139/cgj-2014-0150 URL |
[13] |
NG C W W, SHI J W, HONG Y. Three-dimensional centrifuge modelling of basement excavation effects on an existing tunnel in dry sand[J]. Canadian Geotechnical Journal, 2013, 50(8): 874-888.
doi: 10.1139/cgj-2012-0423 URL |
[14] |
HUANG X, HUANG H W, ZHANG D M. Centrifuge modelling of deep excavation over existing tunnels[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2014, 167(1): 3-18.
doi: 10.1680/geng.11.00045 URL |
[15] |
ZHANG J F, CHEN J J, WANG J H, et al. Prediction of tunnel displacement induced by adjacent excavation in soft soil[J]. Tunnelling and Underground Space Technology, 2013, 36: 24-33.
doi: 10.1016/j.tust.2013.01.011 URL |
[16] |
ZHANG Z G, HUANG M S, WANG W D. Evaluation of deformation response for adjacent tunnels due to soil unloading in excavation engineering[J]. Tunnelling and Underground Space Technology, 2013, 38: 244-253.
doi: 10.1016/j.tust.2013.07.002 URL |
[17] |
LIANG R Z, WU W B, YU F, et al. Simplified method for evaluating shield tunnel deformation due to adjacent excavation[J]. Tunnelling and Underground Space Technology, 2018, 71: 94-105.
doi: 10.1016/j.tust.2017.08.010 URL |
[18] | 康成, 叶超, 梁荣柱, 等. 基坑开挖诱发下卧盾构隧道纵向非线性变形研究[J]. 岩石力学与工程学报, 2020, 39(11): 2341-2350. |
KANG Cheng, YE Chao, LIANG Rongzhu, et al. Nonlinear longitudinal deformation of underlying shield tunnels induced by foundation excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(11): 2341-2350. | |
[19] |
ZHANG Z, ZHANG M, ZHAO Q. A simplified analysis for deformation behavior of buried pipelines considering disturbance effects of underground excavation in soft clays[J]. Arabian Journal of Geosciences, 2015, 8(10): 7771-7785.
doi: 10.1007/s12517-014-1773-4 URL |
[20] | 梁荣柱, 林存刚, 夏唐代, 等. 考虑隧道剪切效应的基坑开挖对邻近隧道纵向变形分析[J]. 岩石力学与工程学报, 2017, 36(1): 223-233. |
LIANG Rongzhu, LIN Cungang, XIA Tangdai, et al. Analysis on the longitudinal deformation of tunnels due to pit excavation considering the tunnel shearing effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(1): 223-233. | |
[21] |
LIANG R Z, XIA T D, HUANG M S, et al. Simplified analytical method for evaluating the effects of adjacent excavation on shield tunnel considering the shearing effect[J]. Computers and Geotechnics, 2017, 81: 167-187.
doi: 10.1016/j.compgeo.2016.08.017 URL |
[22] | 应宏伟, 程康, 俞建霖, 等. 考虑地基变形连续的基坑开挖诱发邻近盾构隧道位移预测[J]. 浙江大学学报(工学版), 2021, 55(2): 318-329. |
YING Hongwei, CHENG Kang, YU Jianlin, et al. Prediction of shield tunnel displacement due to adjacent basement excavation considering continuous deformation of ground[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(2): 318-329. | |
张治国, 张孟喜, 王卫东. 基坑开挖对临近地铁隧道影响的两阶段分析方法[J]. 岩土力学, 2011, 32(7): 2085-2092. | |
ZHANG Zhiguo, ZHANG Mengxi, WANG Weidong. Two-stage method for analyzing effects on adjacent metro tunnels due to foundation pit excavation[J]. Rock and Soil Mechanics, 2011, 32(7): 2085-2092. | |
[23] | 徐日庆, 程康, 应宏伟, 等. 考虑埋深与剪切效应的基坑卸荷下卧隧道的形变响应[J]. 岩土力学, 2020, 41(Sup.1): 195-207. |
XU Riqing, CHENG Kang, YING Hongwei, et al. Deformation response of a tunnel under foundation pit unloading considering buried depth and shearing effect[J]. Rock and Soil Mechanics, 2020, 41(Sup.1): 195-207. | |
[24] | MORFIDIS K. Research and development of methods for the modeling of foundation structural elements and soil[D]. Thessaloniki: Aristotle University of Thessaloniki, 2003. |
[25] |
KLAR A, VORSTER T E B, SOGA K, et al. Soil-pipe interaction due to tunnelling: Comparison between Winkler and elastic continuum solutions[J]. Géotechnique, 2005, 55(6): 461-466.
doi: 10.1680/geot.2005.55.6.461 URL |
[26] | 志波由纪夫, 川島一彦, 大日方尚己, 等. シールドトンネルの耐震解析に用いる長手方向覆工剛性の評価法[C]// 土木学会論文集. 日本: 土木学会論文編集委員会, 1988: 319-327. |
[1] | 白旭, 杨苏杰. 过冷度影响海水结冰形状与速度的相场模拟[J]. 上海交通大学学报, 2021, 55(5): 513-520. |
[2] | 袁心怡, 苏焱, 刘祖源. 基于高精度Boussinesq方程的三维浅水晃荡数值研究[J]. 上海交通大学学报, 2021, 55(5): 521-526. |
[3] | 昝鹏1,2,张春东1,刘颜凯1,高志远1. 基于经皮能量传输的人工肛门括约肌生物电磁相容性研究[J]. 上海交通大学学报(自然版), 2018, 52(8): 997-1002. |
[4] | 汤华,熊晓荣,邓琴,袁从华,吴振君. 普立特大桥隧道式锚碇围岩系统的变形规律及破坏机制[J]. 上海交通大学学报(自然版), 2015, 49(07): 961-967. |
[5] | 丁勇春, 王建华, 徐斌. 基于FLAC3D的基坑开挖与支护三维数值分析[J]. 上海交通大学学报, 2009, 43(06): 976-980. |
[6] | 张鹏, 王建华, 陈锦剑. 土工织物拉拔试验中筋土界面力学特性[J]. 上海交通大学学报, 2004, 38(06): 999-1002. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||