上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (11): 1509-1517.doi: 10.16183/j.cnki.jsjtu.2021.103
吕超凡1, 言颖杰2, 林力2,3, 柴岗2, 鲍劲松1()
收稿日期:
2021-04-05
出版日期:
2022-11-28
发布日期:
2022-12-02
通讯作者:
鲍劲松
E-mail:bao@dhu.edu.cn
作者简介:
吕超凡(1997-),男,安徽省黄山市人,硕士生,从事三维深度学习研究.
基金资助:
LÜ Chaofan1, YAN Yingjie2, LIN Li2,3, CHAI Gang2, BAO Jinsong1()
Received:
2021-04-05
Online:
2022-11-28
Published:
2022-12-02
Contact:
BAO Jinsong
E-mail:bao@dhu.edu.cn
摘要:
下颌角截骨手术是近年来较为热门的颅面整形手术.现阶段,下颌角截骨的术前方案设计通常由具有一定年资的医生完成,过程繁琐且耗时较长.为了提高截骨手术术前规划效率,提出一种基于点云语义分割网络的下颌角截骨面设计方法.对颅骨电子计算机断层扫描(CT)数据进行三维重建和表面点采样,将下颌骨三维模型转换为点云数据,然后通过基于Transformer的点云语义分割网络预测下颌骨点云中的截骨区域,最后根据点云分割结果计算出下颌角截骨平面.所提网络主要包括两个部分:一是基于注意力机制的本地特征提取层,用于提取细粒度局部结构信息;二是基于Transformer的非本地特征提取层,用于提取点云的全局上下文信息.在构建的下颌骨语义分割数据集上,将所提算法与其他点云语义分割算法进行比较.结果表明:所提算法能实现最佳的下颌角截骨区域预测,优于目前常见的点云语义分割算法.
中图分类号:
吕超凡, 言颖杰, 林力, 柴岗, 鲍劲松. 基于点云语义分割算法的下颌角截骨面设计[J]. 上海交通大学学报, 2022, 56(11): 1509-1517.
LÜ Chaofan, YAN Yingjie, LIN Li, CHAI Gang, BAO Jinsong. Design of Mandibular Angle Osteotomy Plane Based on Point Cloud Semantic Segmentation Algorithm[J]. Journal of Shanghai Jiao Tong University, 2022, 56(11): 1509-1517.
[1] |
ZHANG C, MA M W, XU J J, et al. Application of the 3D digital ostectomy template (DOT) in mandibular angle ostectomy (MAO)[J]. Journal of Cranio-Maxillofacial Surgery, 2018, 46(10): 1821-1827.
doi: 10.1016/j.jcms.2018.07.026 URL |
[2] | MENG H Y, GAO L, LAI Y K, et al. VV-net: Voxel VAE net with group convolutions for point cloud segmentation[C]∥2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea: IEEE, 2019: 8499-8507. |
[3] |
WANG Z J, LU F. VoxSegNet: Volumetric CNNs for semantic part segmentation of 3D shapes[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(9): 2919-2930.
doi: 10.1109/TVCG.2019.2896310 URL |
[4] |
LE T, BUI G, DUAN Y. A multi-view recurrent neural network for 3D mesh segmentation[J]. Computers & Graphics, 2017, 66: 103-112.
doi: 10.1016/j.cag.2017.05.011 URL |
[5] | KUNDU A, YIN X Q, FATHI A, et al. Virtual multi-view fusion for 3D semantic segmentation[C]∥Computer Vision-ECCV 2020. Glasgow, UK: Springer, 2020: 518-535. |
[6] | CHARLES R Q, HAO S, MO K C, et al. PointNet: Deep learning on point sets for 3D classification and segmentation[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 77-85. |
[7] | CHARLES R Q, LI Y, HAO S, et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space[C]∥Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, California, USA: NIPS, 2017: 5099-5108. |
[8] | WANG Y, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 1-12. |
[9] | LIU Y C, FAN B, XIANG S M, et al. Relation-shape convolutional neural network for point cloud analysis[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 8887-8896. |
[10] | WANG L, HUANG Y C, HOU Y L, et al. Graph attention convolution for point cloud semantic segmentation[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 10288-10297. |
[11] | HU Q Y, YANG B, XIE L H, et al. RandLA-net: Efficient semantic segmentation of large-scale point clouds[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA: IEEE, 2020: 11105-11114. |
[12] |
GUO M H, CAI J X, LIU Z N, et al. PCT: Point cloud transformer[J]. Computational Visual Media, 2021, 7(2): 187-199.
doi: 10.1007/s41095-021-0229-5 URL |
[13] | 赵沁园, 刘磊, 章一新, 等. 手术导板应用于下颌骨精确截骨的前瞻性随机对照研究[J]. 中国美容整形外科杂志, 2018, 29(9): 524-526. |
ZHAO Qinyuan, LIU Lei, ZHANG Yixin, et al. The accuracy of a surgical template for mandibular angle osteotomy: A prospective randomized controlled trial[J]. Chinese Journal of Aesthetic and Plastic Surgery, 2018, 29(9): 524-526. | |
[14] | LI J X, CHEN B M, LEE G H. SO-net: Self-organizing network for point cloud analysis[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 9397-9406. |
[15] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30: 5998-6008. |
[16] | LEE J, YOON W, KIM S, et al. BioBERT: A pre-trained biomedical language representation model for biomedical text mining[J]. Bioinformatics, 2019, 36(4): 1234-1240. |
[17] | DONG L H, XU S, XU B. Speech-transformer: A no-recurrence sequence-to-sequence model for speech recognition[C]∥2018 IEEE International Conference on Acoustics, Speech and Signal Processing. Calgary, AB, Canada: IEEE, 2018: 5884-5888. |
[18] | SHAW P, USZKOREIT J, VASWANI A. Self-attention with relative position representations[C]∥Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2018: 464-468. |
[19] |
MAO X Y, FU X, NIU F, et al. Three-dimensional analysis of mandibular angle classification and aesthetic evaluation of the lower face in Chinese female adults[J]. Annals of Plastic Surgery, 2018, 81(1): 12-17.
doi: 10.1097/SAP.0000000000001463 pmid: 29762450 |
[1] | 曾国治, 魏子清, 岳宝, 丁云霄, 郑春元, 翟晓强. 基于CNN-RNN组合模型的办公建筑能耗预测[J]. 上海交通大学学报, 2022, 56(9): 1256-1261. |
[2] | 吴庶宸, 戚宗锋, 李建勋. 基于深度学习的智能全局灵敏度分析[J]. 上海交通大学学报, 2022, 56(7): 840-849. |
[3] | 李高阳, 贾爱亭, 洪波, 李湘文, 高佳篷. 大型箱型梁高速GMAW三维位姿快速估计方法[J]. 上海交通大学学报, 2022, 56(6): 794-800. |
[4] | 陶海红, 闫莹菲. 一种基于GA-CNN的网络化雷达节点遴选算法[J]. 空天防御, 2022, 5(1): 1-5. |
[5] | 金丽洁, 武亚涛. 基于双CNN的雷达信号调制类型识别方法[J]. 空天防御, 2022, 5(1): 66-70. |
[6] | 王兴志, 翟海保, 严亚勤, 吴庆曦. 基于数字孪生和深度学习的新一代调控系统预调度方法[J]. 上海交通大学学报, 2021, 55(S2): 37-41. |
[7] | 王岩, 陈耀然, 韩兆龙, 周岱, 包艳. 基于互信息理论与递归神经网络的短期风速预测模型[J]. 上海交通大学学报, 2021, 55(9): 1080-1086. |
[8] | 王宇, 余岳峰, 朱小磊, 张忠孝. 基于光流法和深度学习的燃气火焰稳定性[J]. 上海交通大学学报, 2021, 55(4): 462-470. |
[9] | 蔡云泽, 张彦军. 基于双通道特征增强集成注意力网络的红外弱小目标检测方法[J]. 空天防御, 2021, 4(4): 14-22. |
[10] | 曹靖豪, 张俊举, 黄维, 姚若彤, 张平. 基于多尺度特征融合的无人机识别与检测[J]. 空天防御, 2021, 4(1): 60-64. |
[11] | 刘文海,胡洁,王伟明. 基于完备抓取构型和多阶段网络的软体手抓取[J]. 上海交通大学学报, 2020, 54(5): 507-514. |
[12] | 陈寂驰, 魏国华, 郭聪隆, 张立和. 一种基于红外图像序列的深度学习三维重建仿真方法初探[J]. 空天防御, 2020, 3(4): 21-29. |
[13] | 章云港,杨剑锋,易本顺. 低剂量CT图像去噪的改进型残差编解码网络[J]. 上海交通大学学报, 2019, 53(8): 983-989. |
[14] | 袁利毫, 昝英飞, 钟声华, 祝海涛. 基于YOLOv3的水下小目标自主识别[J]. 海洋工程装备与技术, 2018, 5(增刊): 118-123. |
[15] | 易平,王科迪,黄程,顾双驰,邹福泰,李建华. 人工智能对抗攻击研究综述[J]. 上海交通大学学报(自然版), 2018, 52(10): 1298-1306. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||