上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (8): 1035-1048.doi: 10.16183/j.cnki.jsjtu.2020.387
所属专题: 《上海交通大学学报》2021年12期专题汇总专辑; 《上海交通大学学报》2021年“自动化技术、计算机技术”专题
• 专家论坛 • 上一篇
收稿日期:
2020-11-23
出版日期:
2021-08-28
发布日期:
2021-08-31
通讯作者:
王春香
E-mail:wangcx@sjtu.edu.cn
作者简介:
胡益恺(1996-),男,安徽省合肥市人,硕士生,主要研究方向为机器人
基金资助:
HU Yikai, WANG Chunxiang(), YANG Ming
Received:
2020-11-23
Online:
2021-08-28
Published:
2021-08-31
Contact:
WANG Chunxiang
E-mail:wangcx@sjtu.edu.cn
摘要:
结合目前国内外智能车辆决策方法的研究现状,分别从决策的输入、输出、周边环境交互方式以及算法类型4个方面对决策方法进行分类归纳、优缺点分析以及适用场景评估;总结归纳现阶段常见决策评估方法以及用于决策研究的数据集;分析现阶段决策方法所面临的技术难点以及未来发展趋势.
中图分类号:
胡益恺, 王春香, 杨明. 智能车辆决策方法研究综述[J]. 上海交通大学学报, 2021, 55(8): 1035-1048.
HU Yikai, WANG Chunxiang, YANG Ming. Decision-Making Method of Intelligent Vehicles: A Survey[J]. Journal of Shanghai Jiao Tong University, 2021, 55(8): 1035-1048.
表4
NGSIM 数据集数据格式
编号 | 名称 | 描述 |
---|---|---|
1 | vehicle ID | 车辆编号 |
2 | frame ID | 数据帧号 |
3 | total frames | 数据总帧 |
4 | global time | 标准时间 |
5 | local x | 坐标系x值 |
6 | local y | 坐标系y值 |
7 | global x | 标准地理坐标系x值 |
8 | global y | 标准地理坐标系y值 |
9 | vehicle length | 车辆长度 |
10 | vehicle width | 车辆宽度 |
11 | vehicle class | 车辆类型 |
12 | vehicle velocity | 车辆速度 |
13 | vehicle acceleration | 车辆加速度 |
14 | lane identification | 车道编号 |
15 | preceding vehicle | 跟驰前车编号 |
16 | following vehicle | 跟驰后车编号 |
17 | spacing | 车头间距 |
18 | headway | 车头时距 |
表5
High-D数据集数据格式
编号 | 名称 | 描述 |
---|---|---|
1 | id | 记录的ID |
2 | frameRate | 用来录制视频的帧速率 |
3 | locationId | 记录位置的ID |
4 | speedLimit | 行驶车道的速度限制 |
5 | month | 录制的月份 |
6 | weekDay | 录制的工作日完成 |
7 | startTime | 录制的开始时间 |
8 | duration | 记录的持续时间 |
9 | totalDrivenDistance | 所有履带车辆的总行驶距离 |
10 | totalDrivenTime | 所有履带车辆的总行驶时间 |
11 | numVehicles | 跟踪的车辆数量,包括汽车和卡车 |
12 | numCars | 跟踪的汽车数量 |
13 | numTrucks | 跟踪的卡车数量 |
14 | upperLaneMarkings | 上车道标记的y位置 |
15 | lowerLaneMarkings | 下车道标记的y位置 |
[1] | 胡兵, 杨明, 郭林栋, 等. 基于地面快速鲁棒特征的智能车全局定位方法[J]. 上海交通大学学报, 2019, 53(2):203-208. |
HU Bing, YANG Ming, GUO Lindong, et al. Global localization for intelligent vehicles using ground SURF[J]. Journal of Shanghai Jiao Tong University, 2019, 53(2):203-208. | |
[2] | 杜明博, 梅涛, 陈佳佳, 等. 复杂环境下基于RRT的智能车辆运动规划算法[J]. 机器人, 2015, 37(4):443-450. |
DU Mingbo, MEI Tao, CHEN Jiajia, et al. RRT-based motion planning algorithm for intelligent vehicle in complex environments[J]. Robot, 2015, 37(4):443-450. | |
[3] | 陈佳佳. 城市环境下无人驾驶车辆决策系统研究[D]. 合肥: 中国科学技术大学, 2014. |
CHEN Jiajia. Research on decision making system of autonomous vehicle in urban environments[D]. Hefei: University of Science and Technology of China, 2014. | |
[4] |
SCHWARTING W, ALONSO-MORA J, RUS D. Planning and decision-making for autonomous vehicles[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2018, 1(1):187-210.
doi: 10.1146/control.2018.1.issue-1 URL |
[5] | 熊璐, 康宇宸, 张培志, 等. 无人驾驶车辆行为决策系统研究[J]. 汽车技术, 2018(8):1-9. |
XIONG Lu, KANG Yuchen, ZHANG Peizhi, et al. Research on behavior decision-making system for unmanned vehicle[J]. Automobile Technology, 2018(8):1-9. | |
[6] | GONZÁLEZ D S, GARZÓN M, DIBANGOYE J S, et al. Human-like decision-making for automated driving in highways[C]//2019 IEEE Intelligent Transportation Systems Conference (ITSC). Auckland, New Zealand: IEEE, 2019: 2087-2094. |
[7] |
NOH S, AN K. Decision-making framework for automated driving in highway environments[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(1):58-71.
doi: 10.1109/TITS.2017.2691346 URL |
[8] | XIONG G M, KANG Z Y, LI H, et al. Decision-making of lane change behavior based on RCS for automated vehicles in the real environment[C]//2018 IEEE Intelligent Vehicles Symposium (IV). Changshu: IEEE, 2018: 1400-1405. |
[9] |
NISHI T, DOSHI P, PROKHOROV D. Merging in congested freeway traffic using multipolicy decision making and passive actor-critic learning[J]. IEEE Transactions on Intelligent Vehicles, 2019, 4(2):287-297.
doi: 10.1109/TIV URL |
[10] |
KANG K, RAKHA H A. A repeated game freeway lane changing model[J]. Sensors, 2020, 20(6):1554.
doi: 10.3390/s20061554 URL |
[11] | KANG K, RAKHA H A. Game theoretical approach to model decision making for merging maneuvers at freeway on-ramps[J]. Transportation Research Record Journal of the Transportation Research Board, 2017, 2623(1):19-28. |
[12] |
GUO J Q, CHENG S L, LIU Y. Merging and diverging impact on mixed traffic of regular and autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(3):1639-1649.
doi: 10.1109/TITS.6979 URL |
[13] | HOEL C J, WOLFF K, LAINE L. Automated speed and lane change decision making using deep reinforcement learning[C]//2018 21st International Conference on Intelligent Transportation Systems (ITSC). Maui, HI, USA: IEEE, 2018: 2148-2155. |
[14] | ALIZADEH A, MOGHADAM M, BICER Y, et al. Automated lane change decision making using deep reinforcement learning in dynamic and uncertain highway environment[C]//2019 IEEE Intelligent Transportation Systems Conference (ITSC). Auckland, New Zealand: IEEE, 2019: 1399-1404. |
[15] | LI T T, WU J P, CHAN C Y. Evolutionary learning in decision making for tactical lane changing[C]//2019 IEEE Intelligent Transportation Systems Conference (ITSC). Auckland, New Zealand: IEEE, 2019: 19211185. |
[16] | CODEVILLA F, MÜLLER M, LÓPEZ A, et al. End-to-end driving via conditional imitation learning[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane, QLD, Australia: IEEE, 2018: 4693-4700. |
[17] | SANTANA E, HOTZ G. Learning a driving simulator[EB/OL]. (2016-08-01) [2020-06-14]. https://www.researchgate.net/publication/305809416_Learning_a_Driving_Simulator . |
[18] | YUAN W, YANG M, WANG C X, et al. Longitudinal and lateral coupling model based end-to-end learning for lane keeping of self-driving cars[C]//International Conference on Cognitive Systems and Signal Processing. Beijing: ICCSIP, 2019: 425-436. |
[19] |
YUAN W, YANG M, LI H, et al. End-to-end learning for high-precision lane keeping via multi-state model[J]. CAAI Transactions on Intelligence Technology, 2018, 3(4):185-190.
doi: 10.1049/cit2.v3.4 URL |
[20] | YU H, YANG S, GU W H, et al. Baidu driving dataset and end-to-end reactive control model[C]//2017 IEEE Intelligent Vehicles Symposium (IV). Los Angeles, CA, USA: IEEE, 2017: 341-346. |
[21] | BOJARSKI M, YERES P, CHOROMANSKA A, et al. Explaining how a deep neural network trained with end-to-end learning steers a car[EB/OL]. (2017-04-14) [2020-06-14]. https://www.researchgate.net/publication/316505624_Explaining_How_a_Deep_Neural_Network_Trained_with_End-to-End_Learning_Steers_a_Car . |
[22] | IBERRAKEN D, ADOUANE L, DENIS D. Safe autonomous overtaking maneuver based on inter-vehicular distance prediction and multi-level Bayesian decision-making[C]//IEEE Conference on Intelligent Transportation Systems. Maui, HI, USA: IEEE, 2018: 18308831. |
[23] | TRAM T, BATKOVIC I, ALI M, et al. Learning when to drive in intersections by combining reinforcement learning and model predictive control[C]//2019 IEEE Intelligent Transportation Systems Conference (ITSC). Auckland, New Zealand: IEEE, 2019: 19194092. |
[24] | ORZECHOWSKI P F, BURGER C, LAUER M. Decision-making for automated vehicles using a hierarchical behavior-based arbitration scheme[C]//2020 IEEE Intelligent Vehicles Symposium (IV). Las Vegas, NV, USA: IEEE, 2020: 20286743. |
[25] | WANG X, WU J Q, GU Y L, et al. Human-like maneuver decision using LSTM-CRF model for on-road self-driving[C]//2018 21st International Conference on Intelligent Transportation Systems (ITSC). Maui, HI, USA: IEEE, 2018: 210-216. |
[26] | 成英, 高利, 陈雪梅, 等. 有人与无人驾驶车辆交叉口驾驶博弈模型[J]. 北京理工大学学报, 2019, 39(9):938-943. |
CHENG Ying, GAO Li, CHEN Xuemei, et al. A driving game model for manned and unmanned vehicles at intersection[J]. Transactions of Beijing Institute of Technology, 2019, 39(9):938-943. | |
[27] | CHEN Z L, HUANG X M. End-to-end learning for lane keeping of self-driving cars[C]//2017 IEEE Intelligent Vehicles Symposium (IV). Los Angeles, CA, USA: IEEE, 2017: 1856-1860. |
[28] |
LI N, OYLER D W, ZHANG M X, et al. Game theoretic modeling of driver and vehicle interactions for verification and validation of autonomous vehicle control systems[J]. IEEE Transactions on Control Systems Technology, 2018, 26(5):1782-1797.
doi: 10.1109/TCST.87 URL |
[29] | CUNNINGHAM A G, GALCERAN E, EUSTICE R M, et al. MPDM: Multipolicy decision-making in dynamic, uncertain environments for autonomous driving[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, WA, USA: IEEE, 2015: 1670-1677. |
[30] | SCHWARTING W, PASCHEKA P. Recursive conflict resolution for cooperative motion planning in dynamic highway traffic[C]//17th International IEEE Conference on Intelligent Transportation Systems (ITSC). Qingdao: IEEE, 2014: 1039-1044. |
[31] | LENZ D, KESSLER T, KNOLL A. Tactical cooperative planning for autonomous highway driving using Monte-Carlo Tree Search[C]//2016 IEEE Intelligent Vehicles Symposium (IV). Gothenburg, Sweden: IEEE, 2016: 447-453. |
[32] | CUNNINGHAM A G, GALCERAN E, MEHTA D, et al. MPDM: Multi-policy decision-making from autonomous driving to social robot navigation[M]//WASCHL H, KOLMANOVSKY I, WILLEMS F. Control Strategies for Advanced Driver Assistance Systems and Autonomous Driving Functions. Berlin, Germany: Springer, 2019: 201-223. |
[33] | CHEN J Y, TANG C, XIN L, et al. Continuous decision making for on-road autonomous driving under uncertain and interactive environments[C]//2018 IEEE Intelligent Vehicles Symposium (IV). Changshu: IEEE, 2018: 1651-1658. |
[34] | WEI J Q, DOLAN J M, LITKOUHI B. Autonomous vehicle social behavior for highway entrance ramp management[C]//2013 IEEE Intelligent Vehicles Symposium (IV). Gold Coast, QLD, Australia: IEEE, 2013: 201-207. |
[35] | HOERMANN S, STUMPER D, DIETMAYER K. Probabilistic long-term prediction for autonomous vehicles[C]//2017 IEEE Intelligent Vehicles Symposium (IV). Piscataway, NJ, USA: IEEE, 2017: 237-243. |
[36] |
DING W C, ZHANG L, CHEN J, et al. Safe trajectory generation for complex urban environments using spatio-temporal semantic corridor[J]. IEEE Robotics and Automation Letters, 2019, 4(3):2997-3004.
doi: 10.1109/LSP.2016. URL |
[37] | 武历颖. 无人驾驶汽车环境信息提取及运动决策方法研究[D]. 西安: 长安大学, 2016. |
WU Liying. Research on environmental information extraction and movement decision-making method of unmanned vehicle[D]. Xi’an: Changan University, 2016. | |
[38] | LEURENT E, MERCAT J. Social attention for autonomous decision-making in dense traffic[EB/OL]. (2019-11-27) [2020-06-14]. https://arxiv.org/abs/1911.12250 . |
[39] | MEHTA A, SUBRAMANIAN A. Learning end-to-end autonomous driving using guided auxiliary supervision[EB/OL]. (2018-08-30) [2020-06-14]. https://www.researchgate.net/publication/327335968_Learning_End-to-end_Autonomous_Driving_using_Guided_Auxiliary_Supervision . |
[40] | XU J X, LUO Q, XU K C, et al. An automated learning-based procedure for large-scale vehicle dynamics modeling on Baidu Apollo platform[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ, USA: IEEE, 2019: 5049-5056. |
[41] | SUTTON R S, BARTO A G. Reinforcement learning: An introduction[J]. IEEE Transactions on Neural Networks, 1998, 9(5):1054. |
[42] | PIETER A, ANDREW Y. Apprenticeship learning via inverse reinforcement learning[EB/OL]. (2004-09-01) [2020-06-14]. https://www.researchgate.net/publication/2947330_Apprenticeship_Learning_via_Inverse_Reinforcement_Learning . |
[43] | BOJARSKI M, DEL TESTA D, DWORAKOWSKI D, et al. End to end learning for self-driving cars[EB/OL]. (2016-04-01)[2020-06-15]. https://www.researchgate.net/publication/301648615_End_to_End_Learning_for_Self-Driving_Cars . |
[44] | XU H Z, GAO Y, YU F, et al. End-to-end learning of driving models from large-scale video datasets[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2017: 3530-3538. |
[45] | HECKER S, DAI D X, GOOL L. End-to-end learning of driving models with surround-view cameras and route planners[C]//European Conference on Computer Vision. Glasgow, UK: Springer, 2018: 449-468. |
[46] | GAO Z H, SUN T J, XIAO H W. Decision-making method for vehicle longitudinal automatic driving based on reinforcement Q-learning[J]. International Journal of Advanced Robotic Systems, 2019, 16(3):172988141985318. |
[47] |
YE Y J, ZHANG X H, SUN J. Automated vehicle’s behavior decision making using deep reinforcement learning and high-fidelity simulation environment[J]. Transportation Research Part C: Emerging Technologies, 2019, 107:155-170.
doi: 10.1016/j.trc.2019.08.011 URL |
[48] | 郑睿. 基于增强学习的无人车辆智能决策方法研究[D]. 长沙: 国防科学技术大学, 2013. |
ZHENG Rui. Reinforcement learning-based intelligent decision-making methods for unmanned vehicles[D]. Changsha: National University of Defense Technology, 2013. | |
[49] | YUAN W, YANG M, HE Y S, et al. Multi-reward architecture based reinforcement learning for highway driving policies[C]//2019 IEEE Intelligent Transportation Systems Conference (ITSC). Auckland, New Zealand: IEEE, 2019: 19194107. |
[50] | QIAO Z Q, MUELLING K, DOLAN J M, et al. Automatically generated curriculum based reinforcement learning for autonomous vehicles in urban environment[C]//2018 IEEE Intelligent Vehicles Symposium (IV). Piscataway, NJ, USA: IEEE, 2018: 1233-1238. |
[51] | BOUTON M, NAKHAEI A, FUJIMURA K, et al. Cooperation-aware reinforcement learning for merging in dense traffic[C]//2019 IEEE Intelligent Transportation Systems Conference (ITSC). Changshu: IEEE, 2019: 3441-3447. |
[52] | KAUSHIK M, PRASAD V, KRISHNA K M, et al. Overtaking maneuvers in simulated highway driving using deep reinforcement learning[C]//2018 IEEE Intelligent Vehicles Symposium (IV). Changshu: IEEE, 2018: 1885-1890. |
[53] | FERDOWSI A, CHALLITA U, SAAD W, et al. Robust deep reinforcement learning for security and safety in autonomous vehicle systems[C]//2018 21st International Conference on Intelligent Transportation Systems (ITSC). Piscataway, NJ, USA: IEEE, 2018: 307-312. |
[54] | MA X B, CAMPBELL D K, KOCHENDERFER M J. Improved robustness and safety for autonomous vehicle control with adversarial reinforcement learning[C]//2018 IEEE Intelligent Vehicles Symposium (IV). Changshu: IEEE, 2018: 18168097. |
[55] | SHARIFZADEH S, CHIOTELLIS I, TRIEBEL R, et al. Learning to drive using inverse reinforcement learning and deep Q-networks[EB/OL]. (2016-12-12) [2020-06-14]. https://arxiv.org/abs/1612.03653 . |
[56] | CHEN X L, MONFORT M, ZIEVART B D, et al. Adversarial inverse optimal control for general imitation learning losses and embodiment transfer[EB/OL]. (2016-06-01)[2020-06-14]. https://scholar.google.com.hk/scholar?hl=zh-CN&as_sdt=0%2C5&q=Adversarial+Inverse+Optimal+Control+for+General+Imitation+Learning+Losses+and+Embodiment+Transfer&btnG= . |
[57] | MAJUMDAR A, SINGH S, MANDLEKAR A, et al. Risk-sensitive inverse reinforcement learning via coherent risk models[EB/OL]. [2020-06-14]. http://www.roboticsproceedings.org/rss13/p69.pdf . |
[58] | WULFMEIER M, ONDRUSKA P, POSNER I. Maximum entropy deep inverse reinforcement learning[EB/OL]. (2015-07-17) [2020-06-14]. https://arxiv.org/abs/1507.04888 . |
[59] | AHN H, BERNTORP K, DI CAIRANO S. Reachability-based decision making for city driving[C]//2018 Annual American Control Conference (ACC). Milwaukee, WI, USA: IEEE, 2018: 3203-3208. |
[60] | BOUTON M, NAKHAEI A, FUJIMURA K, et al. Safe reinforcement learning with scene decomposition for navigating complex urban environments[C]//2019 IEEE Intelligent Vehicles Symposium (IV). Paris, France: IEEE, 2019: 1469-1476. |
[61] | 陈雪梅, 田赓, 苗一松, 等. 城市环境下无人驾驶车辆驾驶规则获取及决策算法[J]. 北京理工大学学报, 2017, 37(5):491-496. |
CHEN Xuemei, TIAN Geng, MIAO Yisong, et al. Driving rule acquisition and decision algorithm to unmanned vehicle in urban traffic[J]. Transactions of Beijing Institute of Technology, 2017, 37(5):491-496. | |
[62] |
NISHI T, DOSHI P, PROKHOROV D. Merging in congested freeway traffic using multipolicy decision making and passive actor-critic learning[J]. IEEE Transactions on Intelligent Vehicles, 2019, 4(2):287-297.
doi: 10.1109/TIV URL |
[63] | ALEXIADIS V, COLYAR J, HALKIAS J, et al. The next generation simulation program[J]. Institute of Transportation Engineers. ITE Journal, 2004, 74(8):22. |
[64] | LI G, FANG S, MA J X, et al. Modeling merging acceleration and deceleration behavior based on gradient-boosting decision tree[J]. Journal of Transportation Engineering, Part A: Systems, 2020, 146(7):1-9. |
[65] |
LI G, PAN Y Y, YANG Z, et al. Modeling vehicle merging position selection behaviors based on a finite mixture of linear regression models[J]. IEEE Access, 2019, 7:158445-158458.
doi: 10.1109/Access.6287639 URL |
[66] | BIN AL ISLAM S M A, ABDUL AZIZ H M, HAJBABAIE A. Stochastic gradient-based optimal signal control with energy consumption bounds[EB/OL]. (2020-03-18) [2020-06-14]. https://scholar.google.com.hk/scholar?hl=zh-CN&as_sdt=0%2C5&q=Stochastic+Gradient-Based+Optimal+Signal+Control+With+Energy+Consumption+Bounds&btnG= . |
[67] |
LI G, CHENG J. Exploring the effects of traffic density on merging behavior[J]. IEEE Access, 2019, 7:51608-51619.
doi: 10.1109/Access.6287639 URL |
[68] | KRAJEWSKI R, BOCK J, KLOEKER L, et al. The highD dataset: A drone dataset of naturalistic vehicle trajectories on German highways for validation of highly automated driving systems[C]//2018 21st International Conference on Intelligent Transportation Systems (ITSC). Maui, HI, USA: IEEE, 2018: 18309040. |
[69] | ZHAN W, SUN L, WANG D, et al. Interaction dataset: An international, adversarial and cooperative motion dataset in interactive driving scenarios with semantic maps[EB/OL]. (2019-09-30) [2020-06-14]. https://arxiv.org/abs/1910.03088 . |
[70] | HOUSTON J, ZUIDHOF G, BERGAMINI L, et al. One thousand and one hours: Self-driving motion Prediction dataset[EB/OL]. (2020-06-25) [2020-08-14]. https://arxiv.org/abs/2006.14480 . |
[71] | KIM H, KIM D, KIM G, et al. Multi-head attention based probabilistic vehicle trajectory prediction[C]//2020 IEEE Intelligent Vehicles Symposium (IV). Las Vegas, NV, USA: IEEE, 2020: 1720-1725. |
[72] |
RUDENKO A, PALMIERI L, HERMAN M, et al. Human motion trajectory prediction: A survey[J]. The International Journal of Robotics Research, 2020, 39(8):895-935.
doi: 10.1177/0278364920917446 URL |
[73] | ETESAMI J, GEIGER P. Causal transfer for imitation learning and decision making under sensor-shift[C]// Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(6):10118-10125. |
[74] | MESSAOUD K, YAHIAOUI I, VERROUST-BLONDET A, et al. Relational recurrent neural networks for vehicle trajectory prediction[C]//2019 IEEE Intelligent Transportation Systems Conference (ITSC). Auckland, New Zealand: IEEE, 2019: 19193897. |
[75] | WANG X, NAIR S, ALTHOFF M. Falsification-based robust adversarial reinforcement learning[EB/OL]. (2020-07-01) [2020-06-14]. https://arxiv.org/abs/2007.00691 . |
[76] | BHATTACHARYYA R P, SENANAYAKE R, BROWN K, et al. Online parameter estimation for human driver behavior prediction[C]//2020 American Control Conference (ACC). Denver, CO, USA: IEEE, 2020: 19830660. |
[77] | QIAO Z Q, ZHAO J, ZHU J, et al. Human driver behavior prediction based on UrbanFlow[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). Paris, France: IEEE, 2020: 10570-10576. |
[78] |
MESSAOUD K, YAHIAOUI I, VERROUST-BLONDET A, et al. Attention based vehicle trajectory prediction[J]. IEEE Transactions on Intelligent Vehicles, 2021, 6(1):175-185.
doi: 10.1109/TIV URL |
[79] | SUN L T, ZHAN W, HU Y P, et al. Interpretable modelling of driving behaviors in interactive driving scenarios based on cumulative prospect theory[C]//2019 IEEE Intelligent Transportation Systems Conference (ITSC). Auckland, New Zealand: IEEE, 2019: 4329-4335. |
[80] | HU Y P, ZHAN W, TOMIZUKA M. Scenario-transferable semantic graph reasoning for interaction-aware probabilistic prediction[EB/OL]. (2020-04-01)[2020-06-14]. https://www.researchgate.net/publication/340500370_Scenario-Transferable_Semantic_Graph_Reasoning_for_Interaction-Aware_Probabilistic_Prediction . |
[81] | SHU K Q, YU H L, CHEN X X, et al. Autonomous driving at intersections: A critical-turning-point approach for left turns[C]//2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). Rhodes, Greece: IEEE, 2020: 1-6. |
[82] | SHU K, YU H L, CHEN X X, et al. Autonomous driving at intersections: A critical-turning-point approach for left turns[C]//2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). Rhodes, Greece: IEEE, 2020: 20303092. |
[83] |
FENG D, HAASE-SCHÜTZ C, ROSENBAUM L, et al. Deep multi-modal object detection and semantic segmentation for autonomous driving: Datasets, methods, and challenges[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3):1341-1360.
doi: 10.1109/TITS.6979 URL |
[84] | CHANDRA R, GUAN T, PANUGANTI S, et al. Forecasting trajectory and behavior of road-agents using spectral clustering in graph-LSTMs[J]. IEEE Robotics and Automation Letters, 2020, 5(3):19741183. |
[85] | SALZMANN T, IVANOVIC B, CHAKRAVARTY P, et al. Trajectron++: Dynamically-feasible trajectory forecasting with heterogeneous data[C]//European Conference on Computer Vision-ECCV 2020. Glasgow, UK: Springer, 2020: 683-700. |
[86] | GADD M, DE MARTINI D, MARCHEGIANI L, et al. Sense-assess-eXplain (SAX): Building trust in autonomous vehicles in challenging real-world driving scenarios[C]//2020 IEEE Intelligent Vehicles Symposium (IV). Las Vegas, NV, USA: IEEE, 2020: 150-155. |
[1] | 胡益恺, 庄瀚洋, 王春香, 杨明. 基于主从博弈的智能车汇流场景决策方法[J]. 上海交通大学学报, 2021, 55(8): 1027-1034. |
[2] | 郑德重, 杨媛媛, 谢哲, 倪扬帆, 李文涛. 基于Gaussian混合的距离度量学习数据划分方法[J]. 上海交通大学学报, 2021, 55(2): 131-140. |
[3] | 王树凤,张钧鑫,张俊友. 基于人工势场和虚拟领航者的智能车辆编队控制[J]. 上海交通大学学报, 2020, 54(3): 305-311. |
[4] | 伍舜喜,杨明. 基于自然柱状特征地图的智能车定位[J]. 上海交通大学学报(自然版), 2008, 42(10): 1745-1748. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||