上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (11): 1453-1458.doi: 10.16183/j.cnki.jsjtu.2020.242
所属专题: 《上海交通大学学报》2021年12期专题汇总专辑; 《上海交通大学学报》2021年“工程力学”专题
收稿日期:
2020-07-29
出版日期:
2021-11-28
发布日期:
2021-12-03
通讯作者:
王健
E-mail:nsms_sjtu@sjtu.edu.cn
作者简介:
陈炉云(1975-),男,湖南省郴州市人,博士生,主要从事结构减振降噪研究.
CHEN Luyun1,2, WANG Jian1,2(), CUI Yifeng3, KONG Hui1,2
Received:
2020-07-29
Online:
2021-11-28
Published:
2021-12-03
Contact:
WANG Jian
E-mail:nsms_sjtu@sjtu.edu.cn
摘要:
声子晶体的能带结构特性是评估声学超构材料减振降噪性能的重要指标.以二维六韧带手性声子晶体为例,对其能带结构和狄拉克锥特性进行数值分析,在声子晶体布里渊区中心处获得四重偶然简并狄拉克点.通过调整韧带的设计参数,实现对双狄拉克锥的打开,形成新的定向带隙.研究韧带参数与定向带隙宽度的关系,并进一步讨论能带结构反转问题.研究成果可为手性声子晶体在弹性波操控和声学拓扑绝缘体的应用提供技术支持.
中图分类号:
陈炉云, 王健, 崔益烽, 孔慧. 韧带型声子晶体狄拉克锥特性研究[J]. 上海交通大学学报, 2021, 55(11): 1453-1458.
CHEN Luyun, WANG Jian, CUI Yifeng, KONG Hui. Dirac Cone Characteristics of Hexachiral Phononic Crystal[J]. Journal of Shanghai Jiao Tong University, 2021, 55(11): 1453-1458.
[1] | 吴九汇, 马富银, 张思文, 等. 声学超材料在低频减振降噪中的应用评述[J]. 机械工程学报, 2016, 52(13):68-78. |
WU Jiuhui, MA Fuyin, ZHANG Siwen, et al. Application of acoustic metamaterials in low-frequency vibration and noise reduction[J]. Journal of Mecha-nical Engineering, 2016, 52(13):68-78. | |
[2] | 阮居祺, 卢明辉, 陈延峰, 等. 基于弹性力学的超构材料[J]. 中国科学: 技术科学, 2014, 44(12):1261-1270. |
RUAN Juqi, LU Minghui, CHEN Yanfeng, et al. Metamaterial based on elastic mechanics[J]. Science China Technological Sciences, 2014, 44(12):1261-1270. | |
[3] | 田源, 葛浩, 卢明辉, 等. 声学超构材料及其物理效应的研究进展[J]. 物理学报, 2019, 68(19):7-18. |
TIAN Yuan, GE Hao, LU Minghui, et al. Research advances in acoustic metamaterials[J]. Acta Physica Sinica, 2019, 68(19):7-18. | |
[4] |
BARAVELLI E, RUZZENE M. Internally resonat-ing lattices for bandgap generation and low-frequency vibration control[J]. Journal of Sound and Vibration, 2013, 332(25):6562-6579.
doi: 10.1016/j.jsv.2013.08.014 URL |
[5] |
LIU Z Y, ZHANG X X, MAO Y W, et al. Locally resonant sonic materials[J]. Physica B: Condensed Matter, 2000, 338(1/2/3/4):201-205.
doi: 10.1016/S0921-4526(03)00487-3 URL |
[6] |
CUMMER S A, CHRISTENSEN J, ALÙ A. Controlling sound with acoustic metamaterials[J]. Nature Reviews Materials, 2016, 1(3):16001.
doi: 10.1038/natrevmats.2016.1 URL |
[7] |
JAMES R, WOODLEY S M, DYER C M, et al. Sonic bands, bandgaps, and defect states in layered structures—Theory and experiment[J]. The Journal of the Acoustical Society of America, 1995, 97(4):2041-2047.
doi: 10.1121/1.411995 URL |
[8] | 梁孝东, 缪林昌, 尤佺, 等. 局域共振二维声子晶体的低频带隙特性研究[J]. 人工晶体学报, 2019, 48(7):1225-1232. |
LIANG Xiaodong, MIAO Linchang, YOU Quan, et al. Low-frequency band gap characteristics of locally resonant two-dimensional phononic crystal[J]. Journal of Synthetic Crystals, 2019, 48(7):1225-1232. | |
[9] | 李妍. 光子晶体和声子晶体中由偶然简并所导致的 Dirac 锥形色散关系研究[D]. 广州: 华南理工大学, 2015. |
LI Yan. Research on the Dirac-cone dispersions induced by accidental degeneracy in photonic and phononic crystals[D]. Guangzhou: South China University of Technology, 2015. | |
[10] |
XIAO B, LAI K F, YU Y, et al. Exciting reflectionless unidirectional edge modes in a reciprocal photonic topological insulator medium[J]. Physical Review B, 2016, 94(19):195427.
doi: 10.1103/PhysRevB.94.195427 URL |
[11] | 范海燕, 夏百战. 三维声学超材料的高阶拓扑态[J]. 科学通报, 2020, 65(15):1411-1419. |
FAN Haiyan, XIA Baizhan. Higher-order topological states in a three-dimensional acoustic metamaterial[J]. Chinese Science Bulletin, 2020, 65(15):1411-1419. | |
[12] | 王一鹤, 张志旺, 程营, 等. 声子晶体中的表面声波赝自旋模式和拓扑保护声传输[J]. 物理学报, 2019, 68(22):264-271. |
WANG Yihe, ZHANG Zhiwang, CHENG Ying, et al. Pseudospin modes of surface acoustic wave and topologically protected sound transmission in phono-nic crystal[J]. Acta Physica Sinica, 2019, 68(22):264-271. | |
[13] |
PENG Y G, QIN C Z, ZHAO D G, et al. Experimental demonstration of anomalous Floquet topological insulator for sound[J]. Nature Communications, 2016, 7:13368.
doi: 10.1038/ncomms13368 URL |
[14] |
HE C, NI X, GE H, et al. Acoustic topological insulator and robust one-way sound transport[J]. Nature Physics, 2016, 12(12):1124-1129.
doi: 10.1038/nphys3867 URL |
[15] | 裴东亮, 杨洮, 陈猛, 等. 基于复合蜂窝结构的宽带周期与非周期声拓扑绝缘体[J]. 物理学报, 2020, 69(2):153-161. |
PEI Dongliang, YANG Tao, CHEN Meng, et al. Broadband periodic and aperiodic acoustic topological insulator based on composite honeycomb structure[J]. Acta Physica Sinica, 2020, 69(2):153-161. | |
[16] | 付子义, 王晨旭, 王立国, 等. 基于COMSOL的声子晶体带结构计算新方法[J]. 软件, 2018, 39(12):6-9. |
FU Ziyi, WANG Chenxu, WANG Liguo, et al. A new method for computation of phononic crystals band structure by COMSOL[J]. Computer Engineering & Software, 2018, 39(12):6-9. | |
[17] |
SPADONI A, RUZZENE M, GONELLA S, et al. Phononic properties of hexagonal chiral lattices[J]. Wave Motion, 2009, 46(7):435-450.
doi: 10.1016/j.wavemoti.2009.04.002 URL |
[18] |
HU L L, LUO Z R, YIN Q Y. Negative Poisson’s ratio effect of re-entrant anti-trichiral honeycombs under large deformation[J]. Thin-Walled Structures, 2019, 141:283-292.
doi: 10.1016/j.tws.2019.04.032 URL |
[19] |
MOUSANEZHAD D, HAGHPANAH B, GHOSH R, et al. Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: A simple energy-based approach[J]. Theoretical and Applied Mechanics Letters, 2016, 6(2):81-96.
doi: 10.1016/j.taml.2016.02.004 URL |
[20] | EBRAHIMI H, MOUSANEZHAD D, NAYEB-HASHEMI H, et al. 3D cellular metamaterials with planar anti-chiral topology[J]. Materials & Design, 2018, 145:226-231. |
[21] |
XIA B Z, WANG G B, ZHENG S J. Robust edge states of planar phononic crystals beyond high-symmetry points of Brillouin zones[J]. Journal of the Mechanics and Physics of Solids, 2019, 124:471-488.
doi: 10.1016/j.jmps.2018.11.001 URL |
[22] | BITTNER S, DIETZ B, MISKI-OGLU M, et al. Observation of a Dirac point in microwave experiments with a photonic crystal modeling graphene[J]. Physical Review B Condensed Matter, 2010, 82(1):1558-1564. |
[23] | BITTNER S, DIETZ B, MISKI-OGLU M, et al. Extremal transmission through a microwave photonic crystal and the observation of edge states in a rectangular Dirac billiard[J]. Physical Review B Condensed Matter, 2012, 85(6):652-660. |
[24] |
DIEM M, KOSCHNY T, SOUKOULIS C M. Transmission in the vicinity of the Dirac point in hexa-gonal photonic crystals[J]. Physica B: Condensed Matter, 2010, 405(14):2990-2995.
doi: 10.1016/j.physb.2010.01.020 URL |
[25] | TORRENT D, MAYOU D, SÁNCHEZ-DEHESA J. Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates[J]. Physical Review B Condensed Matter, 2013, 87(11):269-275. |
[26] |
CHENG X J, JOUVAUD C, NI X, et al. Robust reconfigurable electromagnetic pathways within a photonic topological insulator[J]. Nature Materials, 2016, 15(5):542-548.
doi: 10.1038/nmat4573 URL |
[1] | 黄凤华, 程斌, 滕念管. 结构拟静力分量对中低速磁浮车-桥系统地震响应的影响[J]. 上海交通大学学报, 2022, 56(4): 486-497. |
[2] | 黄曌宇1, 2, 唐文勇1, 汪怡2, 王文涛2. 浪向角对自升式海洋平台动态放大因子的影响[J]. 上海交通大学学报(自然版), 2011, 45(09): 1351-1354. |
[3] | 董景龙,陶建峰,刘成良. 双马达驱动转台中框的模态与变形分析 [J]. 上海交通大学学报(自然版), 2010, 44(08): 1130-1134. |
[4] | 黄曌宇,唐文勇,汪怡,王文涛. 自升式海洋平台动态放大因子分析与抑制[J]. 上海交通大学学报(自然版), 2010, 44(06): 816-0819. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||