上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (11): 1445-1452.doi: 10.16183/j.cnki.jsjtu.2021.017
所属专题: 《上海交通大学学报》2021年12期专题汇总专辑; 《上海交通大学学报》2021年“材料科学”专题
收稿日期:
2021-01-18
出版日期:
2021-11-28
发布日期:
2021-12-03
通讯作者:
张福曦
E-mail:fx-zhang@shou.edu.cn
作者简介:
王泽坤(1990-),男,上海市人,博士生,从事晶须材料电子原理、可再生能源、智能算法和图像处理等研究.
基金资助:
Received:
2021-01-18
Online:
2021-11-28
Published:
2021-12-03
Contact:
ZHANG Fuxi
E-mail:fx-zhang@shou.edu.cn
摘要:
压应力释放和原子扩散对3D电子封装中晶须的生长具有重要影响,压应力也是动态再结晶(DRX)的主要因素之一.利用基于有限元的锡晶须生长机理和行为的数学模型,仿真研究具有典型物理尺寸和结构形状的3D电子封装锡层在硅衬底上形成晶须的过程,实现对晶须的定性分析和生长趋势推演;通过控制实验背景氩气体压力、热循环温度和循环周期等关键参数,构建外部因素和镀层薄膜中内压应力与晶须生长速度、长度和密度的加速试验系统;利用扫描电子显微镜观察和检测晶须生长速度和密度变化,并与仿真结果对比,验证压应力释放、原子扩散和DRX在3D电子封装锡晶须生长数学模型中的有效性,实现对晶须的定量描述,对减少未来3D封装微结构图形设计中的晶须问题提供建设性建议.
中图分类号:
王泽坤, 张福曦. 3D电子封装锡晶须建模与实验验证[J]. 上海交通大学学报, 2021, 55(11): 1445-1452.
WANG Zekun, ZHANG Fuxi. Modeling and Experimental Study of Tin Whiskers for 3D Electronic Packaging[J]. Journal of Shanghai Jiao Tong University, 2021, 55(11): 1445-1452.
[1] | HERRING C, GALT J K. Elastic and plastic properties of very small metal specimens[J]. Physical Review, 1952, 85(6):1060-1061. |
[2] | 何小健, 王劲, 程剑, 等. 碰击开关锡晶须与引信弹道炸[J]. 探测与控制学报, 2011, 33(2):1-4. |
HE Xiaojian, WANG Jin, CHENG Jian, et al. Tin whisker on impact switch and fuze ballistic explosion[J]. Journal of Detection & Control, 2011, 33(2):1-4. | |
[3] | HAN S. Assessment of an electrical shorting and metal vapor arcing potential of tin whiskers[D]. Maryland, USA: University of Maryland, College Park: 2012. |
[4] | COUREY K J. An investigation of the electrical short circuit characteristics of tin whiskers[D]. Coral Gables, USA: University of Miami, 2008. |
[5] |
LINDBORG U. A model for the spontaneous growth of zinc, cadmium and tin whiskers[J]. Acta Metallurgica, 1976, 24(2):181-186.
doi: 10.1016/0001-6160(76)90021-3 URL |
[6] | HILLMAN D, WILCOXON R. Tin whisker risk assessment of a tin surface finished connector[J]. Surface Mount Technology, 2015, 30(2):68-79. |
[7] | 周颖. 基于硅通孔的三维电子封装热机械可靠性研究[D]. 武汉: 华中科技大学, 2016. |
ZHOU Ying. Research on reliability of through silicon via (TSV) in 3D integration[D]. Wuhan: Huazhong University of Science and Technology, 2016. | |
[8] |
AGLAN H A, PRAYAKARAO K R, RAHMAN M K, et al. Effect of environmental conditions on tin (Sn) whisker growth[J]. Engineering, 2015, 7(12):816-826.
doi: 10.4236/eng.2015.712071 URL |
[9] |
LIN S K, YORIKADO Y, JIANG J X, et al. Mechanical deformation-induced Sn whiskers growth on electroplated films in the advanced flexible electronic packaging[J]. Journal of Materials Research, 2007, 22(7):1975-1986.
doi: 10.1557/jmr.2007.0232 URL |
[10] |
TU K N, HSIAO H Y, CHEN C. Transition from flip chip solder joint to 3D IC microbump: Its effect on microstructure anisotropy[J]. Microelectronics Reliability, 2013, 53(1):2-6.
doi: 10.1016/j.microrel.2012.07.029 URL |
[11] |
KATO T, AKAHOSHI H, NAKAMURA M, et al. Correlation between whisker initiation and compressive stress in electrodeposited tin-copper coating on copper leadframes[J]. IEEE Transactions on Electronics Packaging Manufacturing, 2010, 33(3):165-176.
doi: 10.1109/TEPM.2010.2045384 URL |
[12] |
JIANG J X, LEE J E, KIM K S, et al. Oxidation behavior of Sn-Zn solders under high-temperature and high-humidity conditions[J]. Journal of Alloys and Compounds, 2008, 462(1/2):244-251.
doi: 10.1016/j.jallcom.2007.08.007 URL |
[13] |
BAATED A, KIM K S, SUGANUMA K, et al. Effects of reflow atmosphere and flux on Sn whisker growth of Sn-Ag-Cu solders[J]. Journal of Materials Science: Materials in Electronics, 2010, 21(10):1066-1075.
doi: 10.1007/s10854-010-0099-6 URL |
[14] |
XU C, ZHANG Y, FAN C L, et al. Driving force for the formation of Sn whiskers: Compressive stress-pathways for its generation and remedies for its elimination and minimization[J]. IEEE Transactions on Electronics Packaging Manufacturing, 2005, 28(1):31-35.
doi: 10.1109/TEPM.2005.846461 URL |
[15] |
LAL S, MOYER T D. Role of intrinsic stresses in the phenomena of tin whiskers in electrical connectors[J]. IEEE Transactions on Electronics Packaging Manufacturing, 2005, 28(1):63-74.
doi: 10.1109/TEPM.2005.846457 URL |
[16] |
VIANCO P T, REJENT J A. Dynamic recrystallization (DRX) as the mechanism for Sn whisker development. Part I: A model[J]. Journal of Electronic Materials, 2009, 38(9):1815-1825.
doi: 10.1007/s11664-009-0879-z URL |
[17] |
NIU C J, LEE H, CHEN S R, et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles[J]. Nature Energy, 2019, 4(7):551-559.
doi: 10.1038/s41560-019-0390-6 URL |
[18] |
LIU Y S, LU C J, ZHANG P G, et al. Mechanisms behind the spontaneous growth of Tin whiskers on the Ti2SnC ceramics[J]. Acta Materialia, 2020, 185:433-440.
doi: 10.1016/j.actamat.2019.12.027 URL |
[19] |
CHEN W J, LEE Y L, WU T Y, et al. Effects of electrical current and external stress on the electromigration of intermetallic compounds between the flip-chip solder and copper substrate[J]. Journal of Electronic Materials, 2018, 47(1):35-48.
doi: 10.1007/s11664-017-5685-4 URL |
[20] |
HE Y, REN X, XU Y, et al. Origin of lithium whisker formation and growth under stress[J]. Nature Nanotechnology, 2019, 14(11):1042-1047.
doi: 10.1038/s41565-019-0558-z URL |
[21] |
JUNG D H, SHARMA A, JUNG J P. A review of soft errors and the low α-solder bumping process in 3D packaging technology[J]. Journal of Materials Science, 2018, 53(1):47-65.
doi: 10.1007/s10853-017-1421-y URL |
[22] |
MIZUGUCHI Y, MURAKAMI Y, TOMIYA S, et al. Effect of crystal orientation on mechanically induced Sn whiskers on Sn-Cu plating[J]. Journal of Electronic Materials, 2012, 41(7):1859-1867.
doi: 10.1007/s11664-012-1962-4 URL |
[23] |
VIANCO P T, NEILSEN M K, REJENT J A, et al. Validation of the dynamic recrystallization (DRX) mechanism for whisker and hillock growth on Sn thin films[J]. Journal of Electronic Materials, 2015, 44(10):4012-4034.
doi: 10.1007/s11664-015-3779-4 URL |
[24] |
CHO S, KO Y. Finite element analysis for reliability of solder joints materials in the embedded package[J]. Electronic Materials Letters, 2019, 15(3):287-296.
doi: 10.1007/s13391-019-00122-1 URL |
[25] |
BOZACK M J, SNIPES E K, FLOWERS G T. Influence of small weight percentages of Bi and systematic coefficient of thermal expansion variations on Sn whiskering[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(3):338-344.
doi: 10.1109/TCPMT.2016.2601694 URL |
[1] | 王伟, 李奥特, 于军力. 基于目标流量拟合的微型燃烧室流量分配设计方法[J]. 上海交通大学学报, 2020, 54(9): 1000-1006. |
[2] | 张维凯,胡鹏. 异重流水卷吸经验式不确定性对层平均数学模型的影响[J]. 上海交通大学学报, 2020, 54(1): 35-42. |
[3] | 梁笑阳,马宁,刘晗,顾解忡. 回转体潜器在循环水槽中垂直面大攻角操纵性试验[J]. 上海交通大学学报, 2019, 53(12): 1395-1403. |
[4] | 胡明,王炅,范一清. 磁流变液孔口出流数学模型[J]. 上海交通大学学报(自然版), 2017, 51(9): 1065-1070. |
[5] | 吴利杰, 于娟, 石建省, 王成敏, 毕志伟, 郭娇. 长尺度气候变化下土壤钾素演变规律的研究——以泾河中游将军村黄土剖面为例[J]. 上海交通大学学报(农业科学版), 2016, 34(1): 69-73. |
[6] | 朱志夏. 非结构化网格嵌套波浪数值模拟[J]. 上海交通大学学报(自然版), 2016, 50(01): 152-157. |
[7] | 黄家瀚,王新杰,王炅. 基于光致形变材料的光驱动微夹钳[J]. 上海交通大学学报(自然版), 2014, 48(12): 1681-1687. |
[8] | 陈侠,张婧,徐光延. 移动威胁下的无人机三维航迹规划[J]. 上海交通大学学报(自然版), 2014, 48(10): 1400-1405. |
[9] | 方继华,谷波,张杰. 转轮式全热回收器的数学模型与变工况性能分析[J]. 上海交通大学学报(自然版), 2014, 48(06): 809-815. |
[10] | 姜文英, 林焰, 陈明, 于雁云. 变量化船舶型线表达与设计方法[J]. 上海交通大学学报(自然版), 2013, 47(02): 323-328. |
[11] | 贾文华 , 殷晨波. 一种压力补偿阀的建模及稳定性分析[J]. 上海交通大学学报(自然版), 2011, 45(04): 561-564. |
[12] | 朱志夏1, 李蓓2. 上海南汇嘴控制工程波浪潮流数学模型[J]. 上海交通大学学报(自然版), 2011, 45(04): 590-596. |
[13] | 倪何,程刚,孙丰瑞. 基于演化参数辨识的流体网络建模 [J]. 上海交通大学学报(自然版), 2011, 45(02): 208-0213. |
[14] | 沈伟,施光林. 一种三自由度气动人工肌肉并联平台动态数学模型 [J]. 上海交通大学学报(自然版), 2011, 45(02): 219-0224. |
[15] | 倪何,程刚,孙丰瑞. 船用冷凝系统的键合图建模与仿真研究[J]. 上海交通大学学报(自然版), 2010, 44(04): 571-0577. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||