上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (4): 486-497.doi: 10.16183/j.cnki.jsjtu.2020.381
收稿日期:
2020-11-16
出版日期:
2022-04-28
发布日期:
2022-05-07
通讯作者:
滕念管
E-mail:ngteng@sjtu.edu.cn
作者简介:
黄凤华 (1991-),男,江苏省南通市人,博士生,主要从事车桥耦合振动研究.
基金资助:
HUANG Fenghua, CHENG Bin, TENG Nianguan()
Received:
2020-11-16
Online:
2022-04-28
Published:
2022-05-07
Contact:
TENG Nianguan
E-mail:ngteng@sjtu.edu.cn
摘要:
与传统桥梁抗震分析关注系统的相对运动不同,车-桥系统的抗震分析关注车辆系统的绝对运动,需考虑结构拟静力分量的影响.为探讨结构拟静力分量对中低速磁浮车-桥系统地震响应特性的影响,以某典型中低速磁浮线路为研究对象,考虑基于比例积分微分 (Proportional Integral Derivative, PID) 主动悬浮控制的磁浮车-桥耦合关系,采用相对运动法和直接求解法,分别在相对坐标系和绝对坐标系下建立中低速磁浮车-桥系统地震响应分析模型.在此基础上,重点探讨了结构拟静力分量对磁浮间隙、车辆系统以及桥梁结构动力响应的影响规律.结果表明:结构拟静力分量对车辆系统的动力响应影响较大,忽略结构拟静力分量会严重低估车辆的加速度响应,差异值最大可达447%;结构拟静力分量对桥梁结构位移响应的影响有限;建议采用考虑结构拟静力分量的绝对位移法处理磁浮车-桥系统中的地震输入.
中图分类号:
黄凤华, 程斌, 滕念管. 结构拟静力分量对中低速磁浮车-桥系统地震响应的影响[J]. 上海交通大学学报, 2022, 56(4): 486-497.
HUANG Fenghua, CHENG Bin, TENG Nianguan. Influence of Structural Pseudo-Static Components on Seismic Responses of Low-Medium Speed Maglev Vehicle-Bridge System[J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 486-497.
表1
磁浮车辆主要计算参数
符号 | 名称及单位 | 数值 |
---|---|---|
Mc | 车体质量/kg | 2.0×104 |
Mb | 悬浮侧架质量/kg | 1000 |
Jαc | 车体转动惯量 (点头)/(kg·m2) | 3.85×105 |
Jβc | 车体转动惯量 (摇头)/(kg·m2) | 3.88×105 |
Jγc | 车体转动惯量 (侧滚)/(kg·m2) | 2.21×103 |
Jαb | 悬浮架转动惯量 (点头)/(kg·m2) | 1150 |
Jβb | 悬浮架转动惯量 (摇头)/(kg·m2) | 1200 |
Ksy | 二系悬挂系竖向刚度/(N·m-1) | 8.0×104 |
Csy | 二系悬挂系竖向阻尼/(N·s·m-1) | 5.0×103 |
Ksz | 二系悬挂系横向刚度/(N·m-1) | 1.5×105 |
Csz | 二系悬挂系横向阻尼/(N·s·m-1) | 2.25×103 |
表2
考虑和忽略拟静力分量时车桥系统响应幅值的差异值
车速/ (km·h-1) | 悬浮系统 | 车辆系统 | 轨道梁跨中 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
悬浮间隙 波动幅值 | 导向间隙 | 悬浮电磁力 波动幅值 | 导向电磁力 | 沉浮加速度 | 偏航加速度 | 竖向位移 | 横向位移 | |||
60 | 19.2 | 111.9 | -5.7 | 143.2 | 368.3 | 61.1 | 3.7 | -1.5 | ||
70 | 23.4 | 216.5 | 7.3 | 118.1 | 394.1 | 61.2 | 0.8 | 0.2 | ||
80 | 16.3 | 153.6 | 6.3 | 110.6 | 449.1 | 50.5 | 2.1 | 1.2 | ||
90 | 7.3 | 219.1 | 4.7 | 113.8 | 322.9 | 44.3 | 2.2 | 0.2 | ||
100 | 22.5 | 192.4 | -5.1 | 82.3 | 323.0 | 46.7 | -0.3 | 2.0 | ||
110 | 26.7 | 205.8 | 9.2 | 89.0 | 309.1 | 56.2 | -0.4 | 1.0 | ||
120 | 34.8 | 171.2 | 0.97 | 101.4 | 366.9 | 47.2 | -0.2 | -1.5 |
[1] | 耿杰, 王党雄, 李小珍, 等. 中低速磁浮列车-简支梁系统耦合振动试验研究[J]. 铁道学报, 2018, 40(2): 117-124. |
GENG Jie, WANG Dangxiong, LI Xiaozhen, et al. Experimental study on coupled vibration of low-medium speed maglev train and simply supported girder system[J]. Journal of the China Railway Society, 2018, 40(2): 117-124. | |
[2] |
LI X Z, WANG D X, LIU D J, et al. Dynamic ana-lysis of the interactions between a low-to-medium-speed maglev train and a bridge: Field test results of two typical bridges[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(7): 2039-2059.
doi: 10.1177/0954409718758502 URL |
[3] |
HU J X, MA W H, LUO S H. Coupled dynamic analysis of low and medium speed maglev vehicle-bridge interaction using SIMPACK[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2021, 235(3): 377-389.
doi: 10.1177/0954409720925676 URL |
[4] |
HUANG F H, CHENG B, TENG N G. A numerical model to predict three-dimensional interaction dynamic of low-medium-speed maglev vehicle-guideway bridge system[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2021, 235(10): 1249-1267.
doi: 10.1177/0954409721996553 URL |
[5] |
KIM K J, HAN J B, HAN H S, et al. Coupled vibration analysis of maglev vehicle-guideway while standing still or moving at low speeds[J]. Vehicle System Dynamics, 2015, 53(4): 587-601.
doi: 10.1080/00423114.2015.1013039 URL |
[6] |
MIN D J, JUNG M R, KIM M Y, et al. Dynamic interaction analysis of maglev-guideway system based on a 3D full vehicle model[J]. International Journal of Structural Stability and Dynamics, 2017, 17(1): 1750006.
doi: 10.1142/S0219455417500067 URL |
[7] | XIA H, HAN Y, ZHANG N, et al. Dynamic analysis of train-bridge system subjected to non-uniform seismic excitations[J]. Earthquake Engineering & Structural Dynamics, 2006, 35(12): 1563-1579. |
[8] | 王少林, 翟婉明. 地震作用下高速列车-线路-桥梁系统动力响应[J]. 西南交通大学学报, 2011, 46(1): 56-62. |
WANG Shaolin, ZHAI Wanming. Dynamic responses of high-speed train-track-bridge system under seismic excitations[J]. Journal of Southwest Jiaotong University, 2011, 46(1): 56-62. | |
[9] | 户东阳, 陈克坚, 李聪林, 等. 近场地震作用下高速铁路简支梁桥行车安全性影响研究[J]. 铁道标准设计, 2021, 65(3): 99-105. |
HU Dongyang, CHEN Kejian, LI Conglin, et al. Research on driving impact on high-speed railway simply supported beam bridges under near-field earthquakes[J]. Railway Standard Design, 2021, 65(3): 99-105. | |
[10] | ZENG Q, DIMITRAKOPOULOS E G. Seismic response analysis of an interacting curved bridge-train system under frequent earthquakes[J]. Earthquake Engineering & Structural Dynamics, 2016, 45(7): 1129-1148. |
[11] |
PARASKEVA T S, DIMITRAKOPOULOS E G, ZENG Q. Dynamic vehicle-bridge interaction under simultaneous vertical earthquake excitation[J]. Bulletin of Earthquake Engineering, 2017, 15(1): 71-95.
doi: 10.1007/s10518-016-9954-z URL |
[12] |
BORJIGIN S, KIM C W, CHANG K C, et al. Nonlinear dynamic response analysis of vehicle-bridge interactive system under strong earthquakes[J]. Engineering Structures, 2018, 176: 500-521.
doi: 10.1016/j.engstruct.2018.09.014 URL |
[13] | 杜宪亭, 夏禾, 余竹. 车桥耦合动力分析中地震动输入模式的研究[J]. 中国铁道科学, 2011, 32(6): 34-40. |
DU Xianting, XIA He, YU Zhu. Study on the input patterns of seismic ground motion in the dynamic interaction analysis of train-bridge system[J]. China Railway Science, 2011, 32(6): 34-40. | |
[14] | 杜宪亭, 乔宏, 夏禾, 等. 地震作用下结构拟静力分量对车桥系统动力响应的影响分析[J]. 振动与冲击, 2016, 35(16): 6-11. |
DU Xianting, QIAO Hong, XIA He, et al. Influence of structure quasi-static components on the dynamic response of train-bridge systems during earthquakes[J]. Journal of Vibration and Shock, 2016, 35(16): 6-11. | |
[15] | 雷虎军, 李小珍. 拟静力分量对列车-轨道-桥梁系统地震响应的影响[J]. 西南交通大学学报, 2015, 50(1): 124-130. |
LEI Hujun, LI Xiaozhen. Effects of structural quasi-static components on seismic responses of train-track-bridge system[J]. Journal of Southwest Jiaotong University, 2015, 50(1): 124-130. | |
[16] |
BRZEZINA W, LANGERHOLC J. Lift and side forces on rectangular pole pieces in two dimensions[J]. Journal of Applied Physics, 1974, 45(4): 1869-1872.
doi: 10.1063/1.1663505 URL |
[17] | 张耿, 李杰, 杨子敬. 低速磁浮轨道不平顺功率谱研究[J]. 铁道学报, 2011, 33(10): 73-78. |
ZHANG Geng, LI Jie, YANG Zijing. Estimation of power spectrum density track irregularities of low-speed maglev railway lines[J]. Journal of the China Railway Society, 2011, 33(10): 73-78. | |
[18] | 王济, 胡晓. MATLAB在振动信号处理中的应用[M]. 北京: 中国水利水电出版社, 知识产权出版社, 2006. |
WANG Ji, HU Xiao. Application of MATLAB in vibration signal processing[M]. Beijing: China Water Conservancy and Hydropower Press, Intellectual Property Press, 2006. | |
[19] | 李小珍, 王党雄, 耿杰, 等. F轨对中低速磁浮列车-桥梁系统竖向耦合振动的影响研究[J]. 土木工程学报, 2017, 50(4): 97-106. |
LI Xiaozhen, WANG Dangxiong, GENG Jie, et al. Study on the influence of F-rail in vertical coupling vibration of low-medium speed maglev train-bridge system[J]. China Civil Engineering Journal, 2017, 50(4): 97-106. | |
[20] |
ZHANG L, HUANG J Y. Dynamic interaction analysis of the high-speed maglev vehicle/guideway system based on a field measurement and model updating method[J]. Engineering Structures, 2019, 180: 1-17.
doi: 10.1016/j.engstruct.2018.11.031 URL |
[1] | 刘红兵, 孙丽萍, 艾尚茂, 闫发锁, 陈国明. 基于改进模态推覆法的导管架平台弹塑性抗震性能[J]. 上海交通大学学报, 2021, 55(3): 265-275. |
[2] | 李宁, 杨伟, 李旭. 自升式平台地震响应分析方法研究[J]. 海洋工程装备与技术, 2016, 3(1): 31-38. |
[3] | 陈炳耀1,吴永昌2. 桥墩高度和高差对双幅桥动力特性及地震响应的影响[J]. 上海交通大学学报(自然版), 2015, 49(07): 968-972. |
[4] | 王辅方, 刘映晶, 向国威, 王建华. 核电低压缸及凝汽器的地震响应分析[J]. 上海交通大学学报, 2012, 46(01): 114-118. |
[5] | 王建炜, 金先龙, 王新, 张伟伟. 双线隧道联络通道地震响应的并行数值分析[J]. 上海交通大学学报(自然版), 2011, 45(10): 1557-1561. |
[6] | 杨广军,黄醒春,李广慧,郭昊. 预制式轨道板的纵向布置对无碴轨道振动特性的影响[J]. 上海交通大学学报(自然版), 2010, 44(06): 812-0815. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||