上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (3): 265-275.doi: 10.16183/j.cnki.jsjtu.2019.204
所属专题: 《上海交通大学学报》2021年12期专题汇总专辑; 《上海交通大学学报》2021年“海洋科学与工程”专题
刘红兵1, 孙丽萍1, 艾尚茂1, 闫发锁1, 陈国明2()
收稿日期:
2019-07-15
出版日期:
2021-03-01
发布日期:
2021-04-02
通讯作者:
陈国明
E-mail:offshore@126.com
作者简介:
刘红兵(1988-),男,湖北省黄冈市人,讲师,主要研究方向为海洋石油装备强度与可靠性.
基金资助:
LIU Hongbing1, SUN Liping1, AI Shangmao1, YAN Fasuo1, CHEN Guoming2()
Received:
2019-07-15
Online:
2021-03-01
Published:
2021-04-02
Contact:
CHEN Guoming
E-mail:offshore@126.com
摘要:
针对强震下海洋导管架平台的弹塑性失效问题,提出一种基于性能设计的海洋导管架平台改进模态推覆抗震分析法,获得强震下平台结构的弹塑性抗震性能及其失效模式,解决强震下海洋导管架平台的弹塑性抗震性能评估难题.通过对比分析设防和罕遇烈度8度地震下平台结构弹塑性地震响应的差异性,探讨平台结构的参振振型、振型形状向量以及地震动不确定性对平台结构弹塑性抗震性能的影响.研究结果表明:高阶振型和振型形状向量对导管架平台弹塑性抗震性能的影响较大,需考虑前9阶或9阶以上的模态振型及振型形状向量变化的影响;设防和罕遇烈度8度地震下,平台结构弹塑性抗震薄弱环节均位于导管架顶部,需重点关注;具有相同峰值加速度的不同地震时程下的平台结构地震响应表现出明显的离散性和差异性,建议采用改进模态推覆法评估强震下平台结构弹塑性抗震性能.
中图分类号:
刘红兵, 孙丽萍, 艾尚茂, 闫发锁, 陈国明. 基于改进模态推覆法的导管架平台弹塑性抗震性能[J]. 上海交通大学学报, 2021, 55(3): 265-275.
LIU Hongbing, SUN Liping, AI Shangmao, YAN Fasuo, CHEN Guoming. Elastic-Plastic Seismic Performance for Jacket Platform Based on Improved Modal Pushover Method[J]. Journal of Shanghai Jiao Tong University, 2021, 55(3): 265-275.
表1
平台结构各阶模态振型质量参与系数表
n | an/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
anx | any | anz | ar,nx | ar,ny | ar,nz | ∑anx | ∑any | ∑anz | ∑ar,nx | ∑ar,ny | ∑ar,nz | |
1 | 0 | 81.54 | 0 | 41.22 | 0 | 0.03 | 0 | 81.54 | 0 | 41.22 | 0 | 0.03 |
2 | 82.76 | 0 | 0 | 0 | 33.19 | 0 | 82.76 | 81.54 | 0 | 41.22 | 33.19 | 0.04 |
3 | 0 | 0.02 | 0 | 0 | 0 | 78.86 | 82.76 | 81.55 | 0 | 41.22 | 33.19 | 78.90 |
4 | 0 | 16.63 | 0 | 50.80 | 0 | 0.01 | 82.76 | 98.18 | 0 | 92.02 | 33.19 | 78.90 |
5 | 16.13 | 0 | 0 | 0 | 47.34 | 0 | 98.89 | 98.18 | 0.01 | 92.02 | 80.53 | 78.90 |
6 | 0 | 0 | 95.77 | 0 | 0 | 0 | 98.89 | 98.18 | 95.78 | 92.02 | 80.53 | 78.90 |
7 | 0 | 0.01 | 0 | 0 | 0 | 20.17 | 98.89 | 98.19 | 95.78 | 92.02 | 80.53 | 99.07 |
8 | 0 | 1.05 | 0 | 0.22 | 0 | 0.03 | 98.89 | 99.24 | 95.78 | 92.24 | 80.53 | 99.10 |
9 | 0.31 | 0 | 0 | 0 | 9.58 | 0 | 99.21 | 99.24 | 95.79 | 92.24 | 90.11 | 99.10 |
10 | 0 | 0 | 0.06 | 0 | 0 | 0 | 99.21 | 99.24 | 95.85 | 92.24 | 90.11 | 99.10 |
[1] | 刘红兵,陈国明,朱本瑞,等. 基于能力谱法导管架平台抗震性能评估[J]. 中国石油大学学报(自然科学版), 2015, 39(5): 124-129. |
LIU Hongbing, CHEN Guoming, ZHU Benrui, et al. Seismic performance evaluation for jacket platform based on capacity spectrum method[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(5): 124-129. | |
[2] | LI C, LI H N, HAO H, et al. Seismic fragility analyses of sea-crossing cable-stayed bridges subjected to multi-support ground motions on offshore sites[J]. Engineering Structures, 2018, 165: 441-456. |
[3] | API. Recommended practice for planning, designing and constructing fixed offshore platforms—Working stress design: RP 2A-WSD[S]. 21st ed. Washington D. C., USA: American Petroleum Institute, 2007. |
[4] | 中华人民共和国住房和城乡建设部. 建筑抗震设计规范: GB 50011-2016[S]. 北京: 中国建筑工业出版社,2016. |
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for seismic design of buildings: GB 50011-2016[S]. Beijing: China Architecture Publishing & Media Co., Ltd., 2016. | |
[5] | ZOU Y, LIU H B, JING L P, et al. A pseudo-static method for seismic responses of underground frame structures subjected to increasing excitations[J]. Tunnelling and Underground Space Technology, 2017, 65: 106-120. |
[6] | ZHOU B, HAN X S, TAN S K. A simplified computational method for random seismic responses of a jacket platform[J]. Ocean Engineering, 2014, 82: 85-90. |
[7] | ZHOU X Y, GU M, LI G. Grouping response method for equivalent static wind loads based on a modified LRC method[J]. Earthquake Engineering and Engineering Vibration, 2012, 11(1): 107-119. |
[8] | ZHOU J, JIANG Y, WANG L X, et al. A long-period elastic response spectrum based on the site-classification of Chinese seismic code[J]. Soil Dynamics and Earthquake Engineering, 2018, 115: 622-633. |
[9] | 陈之毅,谈忠傲,楼梦麟. 地下结构抗震设计方法整体强制反应位移法[J]. 同济大学学报(自然科学版), 2016, 44(8): 1145-1152. |
CHEN Zhiyi, TAN Zhong’ao, LOU Menglin. Integral forced displacement method for seismic design of underground structures[J].Journal of Tongji University (Natural Science), 2016, 44(8): 1145-1152. | |
[10] | KONSTANDAKOPOULOU F D, EVANGELINOS K I, NIKOLAOU I E, et al. Seismic analysis of offshore platforms subjected to pulse-type ground motions compatible with European Standards[J]. Soil Dynamics and Earthquake Engineering, 2020, 129: 105713. |
[11] | Applied Technology Council. Seismic evaluation and retrofit of concrete buildings: Volume 1[R]. Redwood City, CA, USA: Applied Technology Council, 1996. |
[12] | Federal Emergency Management Agency. NEHPR commentary on the guidelines for the seismic rehabilitation of buildings: FEMA Publication 274[S]. Washington D. C., USA: Buliding Seismic Safety Council, 1997. |
[13] | ZOLFAGHARI M R, AJAMY A, ASGARIAN B. A simplified method in comparison with comprehensive interaction incremental dynamic analysis to assess seismic performance of jacket-type offshore platforms[J]. International Journal of Advanced Structural Engineering, 2015, 7(4): 353-364. |
[14] | CHOPRA A K, GOEL R K. A modal pushover analysis procedure for estimating seismic demands for buildings[J]. Earthquake Engineering & Structural Dynamics, 2002, 31(3): 561-582. |
[15] | LIU Y, KUANG J S, HUANG Q X. Extended spectrum-based pushover analysis for predicting earthquake-induced forces in tall buildings[J]. Engineering Structures, 2018, 167: 351-362. |
[16] | ZHONG J, ZHANG J P, ZHI X D, et al. Identification of dominant modes of single-layer reticulated shells under seismic excitations[J]. Thin-Walled Structures, 2018, 127: 676-687. |
[17] | 曲哲,叶列平,潘鹏. 建筑结构弹塑性时程分析中地震动记录选取方法的比较研究[J]. 土木工程学报,2011, 44(7): 10-21. |
QU Zhe, YE Lieping, PAN Peng. Comparative study on methods of selecting earthquake ground motions for nonlinear time history analyses of building structures[J]. China Civil Engineering Journal, 2011, 44(7): 10-21. |
[1] | 俞心晔, 薛鸿祥, 闫书玮. 火灾高温下加筋板极限强度及防护性能[J]. 上海交通大学学报, 2022, 56(7): 929-936. |
[2] | 黄凤华, 程斌, 滕念管. 结构拟静力分量对中低速磁浮车-桥系统地震响应的影响[J]. 上海交通大学学报, 2022, 56(4): 486-497. |
[3] | 张黎明,李源源,薛鸿祥,唐文勇. 火灾升温条件下船体加筋板极限承载能力分析[J]. 上海交通大学学报, 2019, 53(12): 1420-1427. |
[4] | 张法富. 深水半潜式起重铺管船动力定位能力分析[J]. 海洋工程装备与技术, 2017, 4(6): 331-337. |
[5] | 曹树杰, 王冬石, 温纪宏, 金学义, 宋林松. 深水防喷器系统可靠性分析[J]. 海洋工程装备与技术, 2017, 4(1): 1-6. |
[6] | 李宁, 杨伟, 李旭. 自升式平台地震响应分析方法研究[J]. 海洋工程装备与技术, 2016, 3(1): 31-38. |
[7] | 陈炳耀1,吴永昌2. 桥墩高度和高差对双幅桥动力特性及地震响应的影响[J]. 上海交通大学学报(自然版), 2015, 49(07): 968-972. |
[8] | 刘婷婷, 阮诗伦, 尹江洲, 岳前进, 谢彬. 浮式液化天然气液货围护系统的失效模式分析[J]. 海洋工程装备与技术, 2014, 1(1): 50-54. |
[9] | 王辅方, 刘映晶, 向国威, 王建华. 核电低压缸及凝汽器的地震响应分析[J]. 上海交通大学学报, 2012, 46(01): 114-118. |
[10] | 王建炜, 金先龙, 王新, 张伟伟. 双线隧道联络通道地震响应的并行数值分析[J]. 上海交通大学学报(自然版), 2011, 45(10): 1557-1561. |
[11] | 许鑫, 杨建民, 吕海宁. 导管架平台浮托法安装的数值模拟与模型试验[J]. 上海交通大学学报(自然版), 2011, 45(04): 439-445. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||